Table 1 Overview of validation studies classifying five stages
From: Evaluating the performance of wearable EEG sleep monitoring devices: a meta-analysis approach
Study | Device | # of al.a | El. position | El. type | # of part. | Age | Part. | Env.b | Nights | Ref. | Epochs | Device scoringc | OA (mi) | OA (ma) | Wake | N1 | N2 | N3 | REM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Forehead | ||||||||||||||||||||
Headband | ||||||||||||||||||||
Li et al. (2025)27 | WPSG-I27 | 6 | Fp1, Fp2, M1, M2, Chin 1 (EMG), Chin 2 (EMG) | Dry | 20 (M: 13, F: 7) | 56.2 ± 9.5 | Healthy: 6, PD: 8, ALS: 5, nacrolepsy: 1 | Controlled | 1 | PSG scored by 2 experts according to AASM | 26,572 | WPSG-I proprietary algorithm | ACC | 0.89 | 0.96 | 0.96 | 0.93 | 0.93 | 0.98 | 0.98 |
κ | 0.80 | 0.71 | 0.91 | 0.32 | 0.79 | 0.82 | 0.70 | |||||||||||||
SE | 0.89 | 0.74 | 0.97 | 0.34 | 0.83 | 0.93 | 0.63 | |||||||||||||
SP | 0.97 | 0.97 | 0.93 | 0.97 | 0.96 | 0.98 | 0.99 | |||||||||||||
PPV | 0.89 | 0.75 | 0.96 | 0.36 | 0.85 | 0.75 | 0.81 | |||||||||||||
NPV | 0.97 | 0.97 | 0.95 | 0.96 | 0.95 | 1.00 | 0.98 | |||||||||||||
F1 | 0.89 | 0.74 | 0.97 | 0.35 | 0.84 | 0.83 | 0.71 | |||||||||||||
MCC | 0.80 | 0.71 | 0.91 | 0.32 | 0.79 | 0.82 | 0.70 | |||||||||||||
Manual scoring | ACC | 0.95 | 0.98 | 0.98 | 0.96 | 0.97 | 0.99 | 0.99 | ||||||||||||
κ | 0.90 | 0.86 | 0.95 | 0.65 | 0.91 | 0.91 | 0.89 | |||||||||||||
SE | 0.95 | 0.89 | 0.98 | 0.70 | 0.91 | 0.98 | 0.89 | |||||||||||||
SP | 0.99 | 0.98 | 0.97 | 0.98 | 0.99 | 0.99 | 1.00 | |||||||||||||
PPV | 0.95 | 0.86 | 0.98 | 0.63 | 0.95 | 0.86 | 0.89 | |||||||||||||
NPV | 0.99 | 0.98 | 0.97 | 0.98 | 0.97 | 1.00 | 1.00 | |||||||||||||
F1 | 0.95 | 0.88 | 0.98 | 0.66 | 0.93 | 0.91 | 0.89 | |||||||||||||
MCC | 0.90 | 0.86 | 0.95 | 0.65 | 0.91 | 0.91 | 0.89 | |||||||||||||
Ravindran et al. (2025)28 | Dreem69 | 5 | F7, F8, O1, O2, Fpz | Dry | 62 (M: 35, F: 27) | 70.5 ± 6.7 (44–83) | Healthy: 50, AD: 12 | Controlled | 1 | PSG scored by 2 experts according to AASM | 63,546 | Dreem proprietary algorithm | ACC | 0.69 | 0.88 | 0.89 | 0.88 | 0.77 | 0.92 | 0.93 |
κ | 0.58 | 0.54 | 0.74 | 0.14 | 0.52 | 0.68 | 0.61 | |||||||||||||
SE | 0.69 | 0.61 | 0.74 | 0.14 | 0.86 | 0.65 | 0.68 | |||||||||||||
SP | 0.92 | 0.92 | 0.96 | 0.97 | 0.73 | 0.97 | 0.95 | |||||||||||||
PPV | 0.69 | 0.65 | 0.89 | 0.34 | 0.59 | 0.83 | 0.62 | |||||||||||||
NPV | 0.92 | 0.92 | 0.89 | 0.90 | 0.92 | 0.93 | 0.96 | |||||||||||||
F1 | 0.69 | 0.62 | 0.81 | 0.20 | 0.70 | 0.73 | 0.65 | |||||||||||||
MCC | 0.59 | 0.55 | 0.74 | 0.16 | 0.54 | 0.69 | 0.61 | |||||||||||||
Seol et al. (2024)29 | Insomnograf K273 | 4 | Fp1, Fp2, M1, M2 (Fpz as ref) | Wet | 77 (N/R) | >20 years | Suspected or known OSA | Controlled | 1 | PSG scored by an expert according to AASM | 75,677 | Manual scoring | ACC | 0.78 | 0.91 | 0.96 | 0.84 | 0.85 | 0.96 | 0.96 |
κ | 0.71 | 0.73 | 0.86 | 0.55 | 0.69 | 0.71 | 0.81 | |||||||||||||
SE | 0.78 | 0.78 | 0.92 | 0.56 | 0.90 | 0.67 | 0.85 | |||||||||||||
SP | 0.95 | 0.94 | 0.97 | 0.94 | 0.82 | 0.99 | 0.97 | |||||||||||||
PPV | 0.78 | 0.80 | 0.85 | 0.78 | 0.75 | 0.81 | 0.83 | |||||||||||||
NPV | 0.95 | 0.94 | 0.99 | 0.85 | 0.93 | 0.97 | 0.98 | |||||||||||||
F1 | 0.78 | 0.78 | 0.88 | 0.65 | 0.82 | 0.73 | 0.84 | |||||||||||||
MCC | 0.71 | 0.73 | 0.86 | 0.56 | 0.70 | 0.71 | 0.81 | |||||||||||||
Rusanen et al. (2023)30 | Focusband78 | 2 | Fp1, Fp2 (Fpz as ref) | Dry | 10 (M: 7, F: 3) | 23–37 | Healthy | Home (devices fitted by a specialist) | 1 | PSG scored by an expert according to AASM | 9337 | Deep learning (CNN) | ACC | 0.82 | 0.93 | 0.94 | 0.98 | 0.85 | 0.93 | 0.94 |
κ | 0.75 | 0.67 | 0.78 | 0.26 | 0.69 | 0.79 | 0.67 | |||||||||||||
SE | 0.82 | 0.70 | 0.80 | 0.21 | 0.87 | 0.77 | 0.86 | |||||||||||||
SP | 0.96 | 0.95 | 0.97 | 0.99 | 0.83 | 0.98 | 0.96 | |||||||||||||
PPV | 0.82 | 0.74 | 0.83 | 0.35 | 0.79 | 0.89 | 0.85 | |||||||||||||
NPV | 0.96 | 0.95 | 0.96 | 0.98 | 0.90 | 0.94 | 0.97 | |||||||||||||
F1 | 0.82 | 0.72 | 0.82 | 0.28 | 0.82 | 0.83 | 0.85 | |||||||||||||
MCC | 0.75 | 0.67 | 0.78 | 0.28 | 0.69 | 0.79 | 0.82 | |||||||||||||
Casciola et al. (2021)31 | Cognionics79 | 4 | F3, F4, A1, A2 | Dry | 12 (M: 6, F: 6) | 21–61 | Healthy | Controlled | 1 | PSG scored by an expert according to AASM | 9747 | Deep learning (CNN + LSTM) | ACC | 0.74 | 0.90 | 0.92 | 0.89 | 0.83 | 0.95 | 0.90 |
κ | 0.64 | 0.59 | 0.76 | 0.20 | 0.65 | 0.76 | 0.57 | |||||||||||||
SE | 0.74 | 0.69 | 0.82 | 0.28 | 0.74 | 0.87 | 0.73 | |||||||||||||
SP | 0.93 | 0.93 | 0.94 | 0.93 | 0.91 | 0.96 | 0.92 | |||||||||||||
PPV | 0.74 | 0.64 | 0.81 | 0.24 | 0.88 | 0.73 | 0.55 | |||||||||||||
NPV | 0.93 | 0.93 | 0.95 | 0.95 | 0.79 | 0.98 | 0.96 | |||||||||||||
F1 | 0.74 | 0.66 | 0.81 | 0.26 | 0.80 | 0.79 | 0.63 | |||||||||||||
MCC | 0.64 | 0.59 | 0.76 | 0.20 | 0.66 | 0.77 | 0.58 | |||||||||||||
Machine learning (Ensemble-bagged trees model) | ACC | 0.68d | 0.49d | N/R | N/R | N/R | N/R | N/R | ||||||||||||
SE | N/R | N/R | 0.80d | 0.04d | 0.82d | 0.50d | 0.28d | |||||||||||||
Arnal et al. (2020)32 | Dreem69 | 4 | F7, F8, O1, O2, Fpz | Dry | 25 (M: 19, F: 6) | 35.3 ± 7.5 (23–50) | Mostly healthy, some with mild symptoms of anxiety or depression, one with insomnia | Controlled | 1 | PSG scored by 5 experts according to AASM | 24,662 | Deep learning (2 layers of LSTM + Softmax function) | ACC | 0.81 | 0.92 | 0.95 | 0.93 | 0.86 | 0.95 | 0.93 |
κ | 0.73 | 0.69 | 0.76 | 0.43 | 0.72 | 0.78 | 0.78 | |||||||||||||
SE | 0.81 | 0.76 | 0.78 | 0.48 | 0.83 | 0.87 | 0.86 | |||||||||||||
SP | 0.95 | 0.95 | 0.97 | 0.96 | 0.90 | 0.96 | 0.95 | |||||||||||||
PPV | 0.81 | 0.74 | 0.80 | 0.46 | 0.89 | 0.76 | 0.79 | |||||||||||||
NPV | 0.95 | 0.94 | 0.97 | 0.96 | 0.84 | 0.98 | 0.97 | |||||||||||||
F1 | 0.81 | 0.75 | 0.79 | 0.47 | 0.86 | 0.81 | 0.83 | |||||||||||||
MCC | 0.73 | 0.70 | 0.76 | 0.43 | 0.72 | 0.78 | 0.78 | |||||||||||||
Lin et al. (2017)33 | Prototype developed in the study33 | 4 | AF7, Fp1, Fp2, AF8 | Dry | 10 (M: 10, F: 0) | 24 ± 6 | Healthy | Controlled | 1 | PSG scored by an expert according to AASM | 8251 | Machine learning (RVM) | ACC | 0.77 | 0.91 | 0.94 | 0.86 | 0.86 | 0.95 | 0.92 |
κ | 0.69 | 0.65 | 0.80 | 0.23 | 0.70 | 0.83 | 0.72 | |||||||||||||
SE | 0.77 | 0.72 | 0.84 | 0.22 | 0.85 | 0.87 | 0.83 | |||||||||||||
SP | 0.94 | 0.94 | 0.96 | 0.96 | 0.86 | 0.97 | 0.94 | |||||||||||||
PPV | 0.77 | 0.72 | 0.83 | 0.43 | 0.79 | 0.84 | 0.71 | |||||||||||||
NPV | 0.94 | 0.94 | 0.96 | 0.89 | 0.90 | 0.98 | 0.97 | |||||||||||||
F1 | 0.77 | 0.71 | 0.83 | 0.29 | 0.82 | 0.86 | 0.77 | |||||||||||||
MCC | 0.69 | 0.66 | 0.80 | 0.24 | 0.70 | 0.83 | 0.73 | |||||||||||||
Levendowski et al. (2017)22 | X4 Sleep Profiler70 | 2 | AF7, AF8 (Fpz as ref) | Dry | 47 (M: 35, F:12) | 23–77 | Sleep-disordered breathing and healthy | Controlled | 1 | PSG scored by 5 experts according to AASM | 33,635 | X4 Sleep Profiler proprietary algorithm | ACC | 0.77 | 0.91 | 0.90 | 0.87 | 0.86 | 0.96 | 0.95 |
κ | 0.68 | 0.64 | 0.73 | 0.22 | 0.72 | 0.78 | 0.75 | |||||||||||||
SE | 0.77 | 0.71 | 0.77 | 0.32 | 0.83 | 0.79 | 0.83 | |||||||||||||
SP | 0.94 | 0.94 | 0.94 | 0.92 | 0.89 | 0.98 | 0.96 | |||||||||||||
PPV | 0.77 | 0.70 | 0.82 | 0.26 | 0.85 | 0.82 | 0.73 | |||||||||||||
NPV | 0.94 | 0.94 | 0.92 | 0.94 | 0.87 | 0.97 | 0.98 | |||||||||||||
F1 | 0.77 | 0.70 | 0.79 | 0.29 | 0.84 | 0.81 | 0.78 | |||||||||||||
MCC | 0.68 | 0.64 | 0.73 | 0.22 | 0.72 | 0.78 | 0.75 | |||||||||||||
Automatic scoring corrected by reviewer | ACC | 0.80 | 0.92 | 0.92 | 0.88 | 0.87 | 0.96 | 0.97 | ||||||||||||
κ | 0.72 | 0.69 | 0.79 | 0.28 | 0.74 | 0.79 | 0.85 | |||||||||||||
SE | 0.80 | 0.75 | 0.82 | 0.36 | 0.85 | 0.80 | 0.94 | |||||||||||||
SP | 0.95 | 0.95 | 0.96 | 0.93 | 0.89 | 0.98 | 0.97 | |||||||||||||
PPV | 0.80 | 0.74 | 0.87 | 0.33 | 0.86 | 0.83 | 0.80 | |||||||||||||
NPV | 0.95 | 0.95 | 0.94 | 0.94 | 0.88 | 0.97 | 0.99 | |||||||||||||
F1 | 0.80 | 0.74 | 0.84 | 0.34 | 0.85 | 0.81 | 0.87 | |||||||||||||
MCC | 0.72 | 0.69 | 0.79 | 0.28 | 0.74 | 0.79 | 0.85 | |||||||||||||
Finan et al. (2016)34 | X4 Sleep Profiler70 | 2 | AF7, AF8 (Fpz as ref) | Dry | 14 (M: 6, F: 8) | 26.4 ± 3.7 (22–34) | Healthy | Controlled | 1 | PSG scored by an expert according to AASM | 13,445* | X4 Sleep Profiler proprietary algorithm | ACC | 0.66 | 0.86 | 0.92 | 0.89 | 0.78 | 0.88 | 0.85 |
κ | 0.52 | 0.45 | 0.42 | 0.07 | 0.55 | 0.62 | 0.58 | |||||||||||||
SE | 0.66 | 0.55 | 0.44 | 0.27 | 0.72 | 0.60 | 0.72 | |||||||||||||
SP | 0.92 | 0.91 | 0.96 | 0.91 | 0.83 | 0.96 | 0.89 | |||||||||||||
PPV | 0.66 | 0.56 | 0.47 | 0.07 | 0.79 | 0.81 | 0.63 | |||||||||||||
NPV | 0.92 | 0.91 | 0.96 | 0.98 | 0.77 | 0.89 | 0.92 | |||||||||||||
F1 | 0.66 | 0.54 | 0.46 | 0.11 | 0.75 | 0.69 | 0.67 | |||||||||||||
MCC | 0.53 | 0.46 | 0.42 | 0.09 | 0.56 | 0.58 | 0.58 | |||||||||||||
Manual scoring | ACC | 0.74 | 0.90 | 0.94 | 0.93 | 0.81 | 0.90 | 0.90 | ||||||||||||
κ | 0.62 | 0.52 | 0.44 | 0.14 | 0.61 | 0.71 | 0.72 | |||||||||||||
SE | 0.74 | 0.61 | 0.40 | 0.27 | 0.76 | 0.74 | 0.86 | |||||||||||||
SP | 0.93 | 0.93 | 0.98 | 0.95 | 0.85 | 0.95 | 0.91 | |||||||||||||
PPV | 0.74 | 0.61 | 0.57 | 0.12 | 0.81 | 0.80 | 0.72 | |||||||||||||
NPV | 0.93 | 0.92 | 0.95 | 0.98 | 0.80 | 0.93 | 0.96 | |||||||||||||
F1 | 0.74 | 0.60 | 0.47 | 0.17 | 0.79 | 0.77 | 0.79 | |||||||||||||
MCC | 0.62 | 0.53 | 0.45 | 0.15 | 0.61 | 0.71 | 0.73 | |||||||||||||
Sleepmask | ||||||||||||||||||||
Liang et al. (2015)35 | Prototype developed in the study35 | 2 | EOG L, EOG R (Fpz as ref) | Dry | 16 (M:11, F:5) | 25.3 ± 2.5 | Healthy | Controlled | 1 | PSG scored by an expert according to AASM | 6480 | Machine learning (LDA) | ACC | 0.84 | 0.94 | 0.96 | 0.97 | 0.87 | 0.93 | 0.96 |
κ | 0.77 | 0.69 | 0.69 | 0.33 | 0.74 | 0.80 | 0.87 | |||||||||||||
SE | 0.84 | 0.77 | 0.84 | 0.43 | 0.83 | 0.81 | 0.94 | |||||||||||||
SP | 0.96 | 0.96 | 0.97 | 0.98 | 0.91 | 0.97 | 0.96 | |||||||||||||
PPV | 0.84 | 0.71 | 0.62 | 0.29 | 0.89 | 0.87 | 0.87 | |||||||||||||
NPV | 0.96 | 0.95 | 0.99 | 0.99 | 0.85 | 0.95 | 0.98 | |||||||||||||
F1 | 0.84 | 0.73 | 0.71 | 0.35 | 0.86 | 0.84 | 0.90 | |||||||||||||
MCC | 0.77 | 0.69 | 0.70 | 0.34 | 0.74 | 0.80 | 0.88 | |||||||||||||
Sheet-like/patches | ||||||||||||||||||||
Massie et al. (2025)36 | Prototype developed in the study36 | 1 | EOG R (Fpz as ref) | Dry | 106 (M: 60, F: 46) | 58 ± 15 (22–82) | Suspected OSA | Controlled | 1 | PSG scored by experts according to AASM | 81,786 | Deep learning (RNN) | ACC | 0.80 | 0.92 | 0.92 | 0.95 | 0.84 | 0.94 | 0.95 |
κ | 0.70 | 0.66 | 0.77 | 0.44 | 0.69 | 0.62 | 0.78 | |||||||||||||
SE | 0.80 | 0.74 | 0.84 | 0.47 | 0.82 | 0.76 | 0.80 | |||||||||||||
SP | 0.95 | 0.94 | 0.94 | 0.97 | 0.88 | 0.95 | 0.98 | |||||||||||||
PPV | 0.80 | 0.71 | 0.80 | 0.47 | 0.87 | 0.57 | 0.82 | |||||||||||||
NPV | 0.95 | 0.94 | 0.95 | 0.97 | 0.82 | 0.98 | 0.97 | |||||||||||||
F1 | 0.80 | 0.72 | 0.82 | 0.47 | 0.84 | 0.65 | 0.81 | |||||||||||||
MCC | 0.70 | 0.66 | 0.77 | 0.44 | 0.69 | 0.62 | 0.78 | |||||||||||||
Roach et al. (2025)37 | Somfit80 | 1 | Fpz | Wet | 27 (M: 13, F: 14) | 22.3 ± 5.1 | Healthy | Controlled | 1 | PSG scored by 3 experts according to AASM | 21,600 | Somfit proprietary algorithm | ACC | N/R | N/R | N/R | N/R | N/R | N/R | N/R |
κ | 0.47d | N/R | N/R | N/R | N/R | N/R | N/R | |||||||||||||
SE | N/R | N/R | 0.60d | 0.19d | 0.69d | 0.61d | 0.53d | |||||||||||||
Um et al. (2025)38 | Prototype developed in the study38 | 4 | F7, F8, EOG L, EMG L, chin | Dry | 1 (N/R) | N/R | Healthy | Controlled | 1 | PSG scored by an expert according to AASM | 688 | Deep learning (BiLSTM + attention model on spectrogram input) | ACC | 0.73 | 0.89 | 0.96 | 0.78 | 0.79 | 0.98 | 0.95 |
κ | 0.61 | 0.65 | 0.74 | 0.42 | 0.59 | 0.66 | 0.83 | |||||||||||||
SE | 0.73 | 0.75 | 0.72 | 0.73 | 0.70 | 0.77 | 0.83 | |||||||||||||
SP | 0.93 | 0.93 | 0.98 | 0.79 | 0.90 | 0.99 | 0.98 | |||||||||||||
PPV | 0.73 | 0.72 | 0.81 | 0.45 | 0.88 | 0.59 | 0.89 | |||||||||||||
NPV | 0.93 | 0.92 | 0.98 | 0.93 | 0.74 | 0.99 | 0.96 | |||||||||||||
F1 | 0.73 | 0.72 | 0.76 | 0.56 | 0.78 | 0.67 | 0.86 | |||||||||||||
MCC | 0.63 | 0.66 | 0.74 | 0.45 | 0.60 | 0.66 | 0.83 | |||||||||||||
McMahon et al. (2024)39 | Somfit80 | 1 | Fpz | Wet | 106 (M: 59, F: 47) | <65:85 ≥ 65:21 | Suspected or known OSA | Controlled | 1 | PSG scored by 3 experts according to AASM | N/R | Deep learning (U-sleep CNN) | ACC | N/R | N/R | 0.89d | 0.91d | 0.84d | 0.94d | 0.95d |
κ | 0.67d | N/R | N/R | N/R | N/R | N/R | N/R | |||||||||||||
SE | N/R | N/R | 0.78d | 0.22d | 0.84d | 0.58d | 0.87d | |||||||||||||
SP | N/R | N/R | 0.91d | 0.97d | 0.83d | 0.99d | 0.96d | |||||||||||||
PPV | N/R | N/R | 0.76d | 0.38d | 0.76d | 0.85d | 0.76d | |||||||||||||
NPV | N/R | N/R | 0.93d | 0.93d | 0.90d | 0.94d | 0.98d | |||||||||||||
F1 | N/R | N/R | 0.77e | 0.28e | 0.80e | 0.69e | 0.81e | |||||||||||||
Oz et al. (2023)40 | X-trodes soft electrode array81 | 8 | 4 EEG (forehead), 2 EOG R, 2 EMG R (chin) | Dry | 50 (M: 32, F: 18) | 61.4 ± 7.9 | Healthy: 21 PD: 29 | Controlled | 1 | PSG scored by 2 experts according to the AASM | N/R | Manual scoring | ACC | 0.77d | N/R | N/R | N/R | N/R | N/R | N/R |
κ | 0.69d | N/R | 0.70d | 0.22d | 0.58d | 0.41d | 0.72d | |||||||||||||
SE | N/R | N/R | 0.91d | 0.16d | 0.84d | 0.68d | 0.77d | |||||||||||||
SP | N/R | N/R | 0.94d | 0.99 | 0.80d | 0.97d | 0.98d | |||||||||||||
PPV | N/R | N/R | 0.84d | 0.44d | 0.71d | 0.83d | 0.85d | |||||||||||||
F1 | N/R | N/R | 0.87e | 0.23e | 0.77e | 0.75e | 0.81e | |||||||||||||
Kwon et al. (2023)41 | Skin patch developed in the study41 | 5 | 2 EEG (forehead), EOG R, EOG L, EMG (chin) | Dry | 8 (N/R) | N/R | Healthy | Controlled | 1 | PSG scored by an expert according to AASM | 4961 | Deep learning (CNN) | ACC | 0.84 | 0.94 | 0.94 | 0.93 | 0.89 | 0.97 | 0.96 |
κ | 0.76 | 0.68 | 0.82 | 0.23 | 0.77 | 0.80 | 0.80 | |||||||||||||
SE | 0.84 | 0.72 | 0.84 | 0.17 | 0.94 | 0.78 | 0.88 | |||||||||||||
SP | 0.96 | 0.95 | 0.97 | 0.99 | 0.84 | 0.99 | 0.97 | |||||||||||||
PPV | 0.84 | 0.78 | 0.88 | 0.52 | 0.85 | 0.86 | 0.77 | |||||||||||||
NPV | 0.96 | 0.96 | 0.95 | 0.94 | 0.93 | 0.98 | 0.99 | |||||||||||||
F1 | 0.84 | 0.73 | 0.86 | 0.25 | 0.89 | 0.82 | 0.82 | |||||||||||||
MCC | 0.76 | 0.69 | 0.82 | 0.27 | 0.78 | 0.81 | 0.80 | |||||||||||||
Manual scoring | ACC | 0.82 | 0.93 | 0.92 | 0.90 | 0.88 | 0.96 | 0.98 | ||||||||||||
κ | 0.74 | 0.69 | 0.76 | 0.23 | 0.76 | 0.78 | 0.92 | |||||||||||||
SE | 0.82 | 0.73 | 0.72 | 0.30 | 0.94 | 0.75 | 0.92 | |||||||||||||
SP | 0.96 | 0.95 | 0.98 | 0.94 | 0.83 | 0.99 | 0.99 | |||||||||||||
PPV | 0.82 | 0.77 | 0.93 | 0.28 | 0.84 | 0.86 | 0.93 | |||||||||||||
NPV | 0.96 | 0.95 | 0.92 | 0.95 | 0.93 | 0.97 | 0.99 | |||||||||||||
F1 | 0.82 | 0.74 | 0.81 | 0.29 | 0.89 | 0.80 | 0.93 | |||||||||||||
MCC | 0.74 | 0.70 | 0.77 | 0.23 | 0.77 | 0.79 | 0.92 | |||||||||||||
Matsumori et al. (2022)42 | Prototype developed in the study42 | 6 | Forehead (ref on mastoid) | Wet | 27 (M:23, F:4) | 27.4 ± 9.2 | Healthy | Controlled | 1 | PSG scored by an expert according to the AASM | 24,979 | Deep learning (DSN: CNN + BiLSTM) | ACC | 0.81 | 0.92 | 0.97 | 0.90 | 0.92 | 0.95 | 0.89 |
κ | 0.74 | 0.71 | 0.77 | 0.47 | 0.83 | 0.82 | 0.69 | |||||||||||||
SE | 0.81 | 0.76 | 0.70 | 0.58 | 0.85 | 0.85 | 0.83 | |||||||||||||
SP | 0.95 | 0.95 | 0.99 | 0.93 | 0.97 | 0.97 | 0.90 | |||||||||||||
PPV | 0.81 | 0.77 | 0.88 | 0.48 | 0.95 | 0.86 | 0.70 | |||||||||||||
NPV | 0.95 | 0.95 | 0.97 | 0.95 | 0.90 | 0.97 | 0.95 | |||||||||||||
F1 | 0.81 | 0.76 | 0.78 | 0.52 | 0.90 | 0.85 | 0.76 | |||||||||||||
MCC | 0.74 | 0.72 | 0.77 | 0.47 | 0.83 | 0.82 | 0.69 | |||||||||||||
Myllymaa et al. (2016)43 | Bittium Brainstatus EEG82 | 11 | Fp1, Fp2, AF7, AF8, F8, F7, Sp1, Sp2, T10, T9, EOG R | Wet | 31 (M:10, F: 21) | 31.3 ± 11.8 | Sleep bruxism or healthy | Controlled | 1 | PSG scored by 2 experts according to the AASM | 27,692 | Manual scoring | ACC | 0.80 | 0.92 | 0.94 | 0.89 | 0.86 | 0.94 | 0.96 |
κ | 0.71 | 0.69 | 0.76 | 0.43 | 0.72 | 0.79 | 0.77 | |||||||||||||
SE | 0.80 | 0.74 | 0.76 | 0.57 | 0.87 | 0.77 | 0.75 | |||||||||||||
SP | 0.95 | 0.94 | 0.97 | 0.93 | 0.85 | 0.98 | 0.98 | |||||||||||||
PPV | 0.80 | 0.77 | 0.83 | 0.44 | 0.83 | 0.89 | 0.85 | |||||||||||||
NPV | 0.95 | 0.94 | 0.96 | 0.96 | 0.89 | 0.95 | 0.97 | |||||||||||||
F1 | 0.80 | 0.75 | 0.79 | 0.49 | 0.85 | 0.83 | 0.79 | |||||||||||||
MCC | 0.71 | 0.70 | 0.76 | 0.44 | 0.72 | 0.79 | 0.77 | |||||||||||||
Ear | ||||||||||||||||||||
In-ear | ||||||||||||||||||||
Borges et al. (2025)44 | 4 | 2 per ear | Wet | 14 (M: 6, F: 8) | 53.2 ± 17.4 (25–78) | Mostly OSA | Controlled | 1 | PSG scored by an expert according to AASM | 30,960 | Automatic (not specified) | ACC | 0.83 | 0.93 | 0.94 | 0.91 | 0.89 | 0.95 | 0.98 | |
κ | 0.77 | 0.77 | 0.83 | 0.56 | 0.77 | 0.77 | 0.89 | |||||||||||||
SE | 0.83 | 0.80 | 0.81 | 0.60 | 0.91 | 0.74 | 0.93 | |||||||||||||
SP | 0.96 | 0.95 | 0.98 | 0.95 | 0.87 | 0.98 | 0.98 | |||||||||||||
PPV | 0.83 | 0.83 | 0.93 | 0.62 | 0.82 | 0.87 | 0.88 | |||||||||||||
NPV | 0.96 | 0.96 | 0.95 | 0.94 | 0.94 | 0.96 | 0.99 | |||||||||||||
F1 | 0.83 | 0.81 | 0.87 | 0.61 | 0.86 | 0.80 | 0.91 | |||||||||||||
MCC | 0.77 | 0.77 | 0.83 | 0.56 | 0.77 | 0.78 | 0.89 | |||||||||||||
Hammour et al. (2024)45 | Prototype developed in Goverdovsky et al. (2016)74, (2017)75 | 4 | 2 per ear | Wet | 13 (M: 9, F: 4) | 71.8 ± 4.4 (65–83) | Mostly healthy; some with stable comorbidities (type-2 diabetes, sleep apnea, hypertension) | Controlled | 1 | PSG scored by 2 scorers according to AASM | 13,403 | Machine learning (fine-tuned pre-trained LightGBM83) | ACC | 0.74 | 0.90 | 0.90 | 0.86 | 0.83 | 0.94 | 0.95 |
κ | 0.64 | 0.62 | 0.79 | 0.29 | 0.59 | 0.73 | 0.69 | |||||||||||||
SE | 0.74 | 0.67 | 0.90 | 0.36 | 0.72 | 0.74 | 0.64 | |||||||||||||
SP | 0.93 | 0.93 | 0.90 | 0.92 | 0.87 | 0.97 | 0.98 | |||||||||||||
PPV | 0.74 | 0.71 | 0.84 | 0.38 | 0.70 | 0.79 | 0.81 | |||||||||||||
NPV | 0.93 | 0.93 | 0.94 | 0.91 | 0.88 | 0.96 | 0.96 | |||||||||||||
F1 | 0.74 | 0.69 | 0.87 | 0.37 | 0.71 | 0.77 | 0.72 | |||||||||||||
MCC | 0.64 | 0.62 | 0.79 | 0.29 | 0.59 | 0.73 | 0.70 | |||||||||||||
Borup et al. (2023)46 | Prototype developed in Kappel et al. (2018)72 | 12 | 6 per ear | Dry | 20 (M: 7, F:13) | 25.9 (22–36) | Healthy | Home (devices fitted by a specialist) | 4 | PSG scored by an expert according to AASM | 72,942 | Deep learning (personalized ensemble deep learning) | ACC | 0.84 | 0.94 | 0.98 | 0.94 | 0.88 | 0.95 | 0.94 |
κ | 0.78 | 0.75 | 0.88 | 0.47 | 0.76 | 0.85 | 0.80 | |||||||||||||
SE | 0.84 | 0.79 | 0.92 | 0.44 | 0.89 | 0.83 | 0.85 | |||||||||||||
SP | 0.96 | 0.96 | 0.98 | 0.98 | 0.87 | 0.99 | 0.96 | |||||||||||||
PPV | 0.84 | 0.81 | 0.88 | 0.57 | 0.83 | 0.95 | 0.82 | |||||||||||||
NPV | 0.96 | 0.96 | 0.99 | 0.96 | 0.92 | 0.95 | 0.97 | |||||||||||||
F1 | 0.84 | 0.80 | 0.90 | 0.50 | 0.86 | 0.88 | 0.84 | |||||||||||||
MCC | 0.78 | 0.75 | 0.88 | 0.47 | 0.76 | 0.86 | 0.80 | |||||||||||||
Tabar et al. (2023)47 | Prototype developed in the study47 | 4 | 2 per ear | Dry | 10 (M: 6, F: 4) | 27.4 ± 4.9 (22–35) | Healthy | Home (device fitted by participants, PSG by specialist) | 2 | Partial PSG scored by an expert according to AASM | 15,709 | Machine learning (Random Forest) | ACC | 0.81 | 0.92 | 0.96 | 0.92 | 0.85 | 0.96 | 0.93 |
κ | 0.72 | 0.65 | 0.70 | 0.23 | 0.70 | 0.86 | 0.77 | |||||||||||||
SE | 0.81 | 0.71 | 0.76 | 0.17 | 0.89 | 0.90 | 0.81 | |||||||||||||
SP | 0.95 | 0.94 | 0.97 | 0.99 | 0.81 | 0.97 | 0.96 | |||||||||||||
PPV | 0.81 | 0.75 | 0.70 | 0.55 | 0.81 | 0.87 | 0.82 | |||||||||||||
NPV | 0.95 | 0.95 | 0.98 | 0.93 | 0.89 | 0.98 | 0.95 | |||||||||||||
F1 | 0.81 | 0.71 | 0.73 | 0.25 | 0.85 | 0.89 | 0.81 | |||||||||||||
MCC | 0.72 | 0.66 | 0.70 | 0.27 | 0.71 | 0.86 | 0.77 | |||||||||||||
Jørgensen et al. (2023)48 | Prototype developed in Kappel et al. (2018)72 | 12 | 6 per ear | Dry | 1 (M: 0, F:1) | 29 ± 3.8 (22–35) | Healthy | Home (devices fitted by a specialist) | 2 | PSG scored by an expert according to AASM | 1578 | Machine learning (Random Forest) | ACC | 0.79 | 0.92 | 0.98 | 0.91 | 0.82 | 0.93 | 0.95 |
κ | 0.72 | 0.67 | 0.83 | 0.24 | 0.60 | 0.81 | 0.88 | |||||||||||||
SE | 0.79 | 0.71 | 0.90 | 0.48 | 0.58 | 1.00 | 0.96 | |||||||||||||
SP | 0.95 | 0.95 | 0.99 | 0.93 | 0.98 | 0.91 | 0.95 | |||||||||||||
PPV | 0.79 | 0.78 | 0.78 | 0.20 | 0.94 | 0.75 | 0.89 | |||||||||||||
NPV | 0.95 | 0.95 | 1.00 | 0.98 | 0.77 | 1.00 | 0.98 | |||||||||||||
F1 | 0.79 | 0.72 | 0.84 | 0.28 | 0.72 | 0.86 | 0.92 | |||||||||||||
MCC | 0.73 | 0.69 | 0.83 | 0.27 | 0.63 | 0.83 | 0.89 | |||||||||||||
Kjaer et al. (2022)49 | Prototype developed in Kappel et al. (2018)72 | 12 | 6 per ear | Dry | 20 (M: 7, F: 13) | 25.9 ± 3.8 (22–36) | Healthy | Home (devices fitted by a specialist) | 4 | PSG scored by 2 experts according to AASM | 72,942 | Machine learning (Random Forest) | ACC | 0.80 | 0.92 | 0.96 | 0.94 | 0.84 | 0.96 | 0.91 |
κ | 0.73 | 0.65 | 0.84 | 0.15 | 0.68 | 0.85 | 0.70 | |||||||||||||
SE | 0.80 | 0.70 | 0.91 | 0.10 | 0.87 | 0.85 | 0.75 | |||||||||||||
SP | 0.95 | 0.94 | 0.97 | 1.00 | 0.82 | 0.98 | 0.95 | |||||||||||||
PPV | 0.80 | 0.76 | 0.82 | 0.54 | 0.78 | 0.92 | 0.76 | |||||||||||||
NPV | 0.95 | 0.95 | 0.98 | 0.95 | 0.90 | 0.96 | 0.94 | |||||||||||||
F1 | 0.80 | 0.70 | 0.87 | 0.16 | 0.82 | 0.88 | 0.76 | |||||||||||||
MCC | 0.73 | 0.66 | 0.84 | 0.21 | 0.68 | 0.86 | 0.70 | |||||||||||||
Jørgensen et al. (2020)50 | Prototype developed in Zibrandtsen et al. (2016)84 | 8 | 4 per ear | Wet | 13 (M: 5, F: 8) | 41.5 (18–60) | Epilepsy | Controlled | 1–4 | PSG scored by an expert according to AASM | 27,593 | Manual scoring | ACC | 0.81 | 0.92 | 0.96 | 0.89 | 0.85 | 0.94 | 0.98 |
κ | 0.74 | 0.74 | 0.85 | 0.47 | 0.70 | 0.79 | 0.90 | |||||||||||||
SE | 0.81 | 0.80 | 0.91 | 0.63 | 0.80 | 0.80 | 0.87 | |||||||||||||
SP | 0.95 | 0.95 | 0.97 | 0.92 | 0.89 | 0.97 | 0.99 | |||||||||||||
PPV | 0.81 | 0.79 | 0.84 | 0.46 | 0.86 | 0.86 | 0.96 | |||||||||||||
NPV | 0.95 | 0.95 | 0.98 | 0.96 | 0.85 | 0.96 | 0.98 | |||||||||||||
F1 | 0.81 | 0.79 | 0.87 | 0.53 | 0.83 | 0.83 | 0.91 | |||||||||||||
MCC | 0.74 | 0.74 | 0.85 | 0.48 | 0.70 | 0.80 | 0.90 | |||||||||||||
Nakamura et al. (2020)51 | Prototype developed in Goverdovsky et al. (2016)74, (2017)75 | 4 | 2 per ear | Wet | 22 (N/R) | 23.8 ± 4.8 | Healthy | Home (devices fitted by specialist) | 1 | PSG scored by an expert according to AASM | 11,610 | Machine learning (SVM) | ACC | 0.74 | 0.90 | 0.89 | 0.99 | 0.77 | 0.93 | 0.90 |
κ | 0.61 | 0.51 | 0.69 | 0.09 | 0.55 | 0.75 | 0.49 | |||||||||||||
SE | 0.74 | 0.57 | 0.74 | 0.05 | 0.84 | 0.75 | 0.46 | |||||||||||||
SP | 0.94 | 0.92 | 0.94 | 1.00 | 0.71 | 0.97 | 0.97 | |||||||||||||
PPV | 0.74 | 0.73 | 0.77 | 0.64 | 0.71 | 0.84 | 0.67 | |||||||||||||
NPV | 0.94 | 0.93 | 0.93 | 0.99 | 0.84 | 0.95 | 0.92 | |||||||||||||
F1 | 0.74 | 0.59 | 0.76 | 0.09 | 0.77 | 0.79 | 0.54 | |||||||||||||
MCC | 0.62 | 0.53 | 0.69 | 0.18 | 0.56 | 0.75 | 0.50 | |||||||||||||
Mikkelsen et al. (2019)52 | Prototype developed in Kappel et al. (2018)72 | 12 | 6 per ear | Dry | 20 (M:7, F:13) | 25.9 (22–36) | Healthy | Home (devices fitted by a specialist) | 4 | Partial PSG scored by an expert according to AASM | 72,942 | Machine learning (Random Forest) | ACC | 0.81 | 0.92 | 0.96 | 0.93 | 0.85 | 0.96 | 0.91 |
κ | 0.73 | 0.68 | 0.85 | 0.29 | 0.69 | 0.86 | 0.70 | |||||||||||||
SE | 0.81 | 0.77 | 0.84 | 0.52 | 0.79 | 0.93 | 0.77 | |||||||||||||
SP | 0.95 | 0.95 | 0.98 | 0.94 | 0.90 | 0.97 | 0.94 | |||||||||||||
PPV | 0.81 | 0.72 | 0.91 | 0.23 | 0.88 | 0.85 | 0.74 | |||||||||||||
NPV | 0.95 | 0.94 | 0.97 | 0.98 | 0.82 | 0.99 | 0.95 | |||||||||||||
F1 | 0.81 | 0.73 | 0.87 | 0.32 | 0.83 | 0.89 | 0.76 | |||||||||||||
MCC | 0.73 | 0.68 | 0.85 | 0.31 | 0.69 | 0.86 | 0.70 | |||||||||||||
Mikkelsen et al. (2017)53 | Prototype developed in the study53 | 12 | 6 per ear | Wet | 9 (M: 6, F: 3) | 26–44 | Healthy | Home (devices fitted by a specialist) | 1 | Partial PSG scored by experts according to AASM | 7411 | Machine learning (Random Forest) | ACC | 0.60 | 0.84 | 0.84 | 0.92 | 0.74 | 0.91 | 0.80 |
κ | 0.45 | 0.40 | 0.52 | 0.04 | 0.47 | 0.61 | 0.34 | |||||||||||||
SE | 0.60 | 0.52 | 0.53 | 0.16 | 0.69 | 0.74 | 0.46 | |||||||||||||
SP | 0.90 | 0.89 | 0.94 | 0.93 | 0.78 | 0.94 | 0.88 | |||||||||||||
PPV | 0.60 | 0.51 | 0.74 | 0.04 | 0.71 | 0.59 | 0.47 | |||||||||||||
NPV | 0.90 | 0.89 | 0.86 | 0.98 | 0.77 | 0.97 | 0.87 | |||||||||||||
F1 | 0.60 | 0.50 | 0.61 | 0.07 | 0.70 | 0.66 | 0.47 | |||||||||||||
MCC | 0.45 | 0.40 | 0.53 | 0.05 | 0.47 | 0.61 | 0.34 | |||||||||||||
Around-the-ear | ||||||||||||||||||||
da Silva Suoto et al. (2022)55 | Prototype developed in the study55 | 7 | 2 EMG, 1 EOG, 2 forehead, 2 around-the-ear | Wet | 12 (M: 9, F: 3) | 28.9 (18–45) | Healthy | Home (devices fitted by a specialist) | 1 | PSG scored by an expert according to AASM | 10,632 | Manual scoring | ACC | 0.78 | 0.93 | 0.95 | 0.91 | 0.85 | 0.91 | 0.93 |
κ | 0.70 | 0.57 | 0.75 | 0.46 | 0.66 | 0.79 | 0.76 | |||||||||||||
SE | 0.78 | 0.62 | 0.84 | 0.56 | 0.79 | 0.83 | 0.72 | |||||||||||||
SP | 0.96 | 0.95 | 0.96 | 0.94 | 0.87 | 0.95 | 0.98 | |||||||||||||
PPV | 0.78 | 0.62 | 0.72 | 0.46 | 0.76 | 0.87 | 0.90 | |||||||||||||
NPV | 0.96 | 0.95 | 0.98 | 0.96 | 0.89 | 0.93 | 0.94 | |||||||||||||
F1 | 0.78 | N/R | 0.77 | 0.51 | 0.77 | 0.85 | 0.80 | |||||||||||||
MCC | 0.70 | 0.57 | 0.75 | 0.46 | 0.66 | 0.79 | 0.77 | |||||||||||||
da Silva Suoto et al. (2021)54 | cEEGrid85 | 16 | 8 per ear | Wet | 10 (M: 2, F: 8) | 28.4 ± 4.3 | Healthy | Home (devices fitted by a specialist) | 1 | EEG of Fpz, EOG_L and EOG_R scored by expert according to AASM | 9341 | Manual scoring | ACC | 0.75 | 0.92 | 0.94 | 0.92 | 0.82 | 0.95 | 0.91 |
κ | 0.67 | 0.60 | 0.71 | 0.37 | 0.62 | 0.85 | 0.69 | |||||||||||||
SE | 0.75 | 0.70 | 0.69 | 0.35 | 0.82 | 0.90 | 0.67 | |||||||||||||
SP | 0.95 | 0.94 | 0.98 | 0.97 | 0.82 | 0.97 | 0.97 | |||||||||||||
PPV | 0.75 | 0.67 | 0.80 | 0.50 | 0.74 | 0.87 | 0.83 | |||||||||||||
NPV | 0.95 | 0.95 | 0.96 | 0.95 | 0.88 | 0.97 | 0.93 | |||||||||||||
F1 | 0.75 | 0.65 | 0.74 | 0.41 | 0.78 | 0.88 | 0.74 | |||||||||||||
MCC | 0.67 | 0.61 | 0.71 | 0.38 | 0.62 | 0.85 | 0.70 | |||||||||||||
Mikkelsen et al. (2019)56 | cEEGrid85 | 16 | 8 per ear | Wet | 15 (M: 6, F: 9) | 35.3 ± 14.3 | Healthy | Controlled | 1 | PSG scored by 2 experts according to AASM | 18,920 | Machine learning (Random Forest) | ACC | 0.700f | N/R | N/R | N/R | N/R | N/R | N/R |
κ | 0.600f | N/R | N/R | N/R | N/R | N/R | N/R | |||||||||||||
Sterr et al. (2018)57 | cEEGrid85 | 16 | 8 per ear | Wet | 15 (M: 6, F: 9) | 35.3 ± 14.3 | Healthy | Controlled | 1 | PSG scored by 2 experts according to AASM | 18,920 | Manual scoring | ACC | 0.59d | N/R | N/R | N/R | N/R | N/R | N/R |
κ | 0.42d | N/R | N/R | N/R | N/R | N/R | N/R |