Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients

Subjects

Abstract

Polymorphisms in genes coding for drug metabolizing enzymes, such as the cytochrome P450 enzymes CYP2C19 and CYP2D6, can lead to therapy failure and side effects. In earlier studies, the novel variant CYP2C19*17 increased metabolism of several CYP2C19 substrates. The objective of this study was to evaluate the impact of CYP2C19*17 on the metabolism of amitriptyline (AT), citalopram (CIT), and clomipramine (CLOM). Six-hundred and seventy-eight patients were included in this study, based on availability of DNA and serum levels of parent drug and main metabolite. We investigated the relationship between CYP2C19 genotypes and metabolic parameters, including serum levels corrected for dose and metabolic ratio (MR). The CYP2C19*17 allele was significantly associated with decreased MR for CIT (CYP2C19*1/*17 mean MR=2.3, compared with CYP2C19*1/*1 mean MR=2.8) and AT (CYP2C19*17/*17 mean MR=0.8, compared with CYP2C19*1/*1 mean MR=3.7 in the CYP2D6*1/*1 subgroup). Furthermore, significant association of CYP2D6 genotype with AT, CIT, and CLOM metabolism was observed. No clear correlation was found between CYP2C19 genotype and CLOM metabolism. This study confirms the increased activity of the CYP2C19*17 allele and shows increased metabolism of drugs that are metabolized by CYP2C19, including AT and CIT. However, the clinical relevance of CYP2C19*17 is probably limited for AT, CIT, and CLOM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Grasmader K, Verwohlt PL, Rietschel M, Dragicevic A, Muller M, Hiemke C et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004; 60: 329–336.

    PubMed  Google Scholar 

  2. Hinrichs JW, Loovers HM, Scholten B, van der Weide J . Semi-quantitative CYP2D6 gene doses in relation to metabolic ratios of psychotropics. Eur J Clin Pharmacol 2008; 64: 979–986.

    Article  CAS  PubMed  Google Scholar 

  3. Steimer W, Zopf K, von AS, Pfeiffer H, Bachofer J, Popp J et al. Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin Chem 2004; 50: 1623–1633.

    Article  CAS  PubMed  Google Scholar 

  4. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–473.

    Article  CAS  PubMed  Google Scholar 

  5. Brockmoller J, Meineke I, Kirchheiner J . Pharmacokinetics of mirtazapine: enantioselective effects of the CYP2D6 ultra rapid metabolizer genotype and correlation with adverse effects. Clin Pharmacol Ther 2007; 81: 699–707.

    Article  CAS  PubMed  Google Scholar 

  6. Scordo MG, Spina E, Dahl ML, Gatti G, Perucca E . Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 2005; 97: 296–301.

    Article  CAS  PubMed  Google Scholar 

  7. Charlier C, Broly F, Lhermitte M, Pinto E, Ansseau M, Plomteux G . Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit 2003; 25: 738–742.

    Article  CAS  PubMed  Google Scholar 

  8. Veefkind AH, Haffmans PM, Hoencamp E . Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000; 22: 202–208.

    Article  CAS  PubMed  Google Scholar 

  9. http://www.cypalleles.ki.se/ 2009. Ref Type: Generic.

  10. Goldstein JA, Ishizaki T, Chiba K, de Morais SM, Bell D, Krahn PM et al. Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 1997; 7: 59–64.

    Article  CAS  PubMed  Google Scholar 

  11. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 2006; 79: 103–113.

    Article  CAS  PubMed  Google Scholar 

  12. Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E . Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 2008; 83: 322–327.

    Article  CAS  PubMed  Google Scholar 

  13. Ohlsson RS, Mwinyi J, Andersson M, Baldwin RM, Pedersen RS, Sim SC et al. Kinetics of omeprazole and escitalopram in relation to the CYP2C19*17 allele in healthy subjects. Eur J Clin Pharmacol 2008; 64: 1175–1179.

    Article  Google Scholar 

  14. Baldwin RM, Ohlsson S, Pedersen RS, Mwinyi J, Ingelman-Sundberg M, Eliasson E et al. Increased omeprazole metabolism in carriers of the CYP2C19*17 allele; a pharmacokinetic study in healthy volunteers. Br J Clin Pharmacol 2008; 65: 767–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. von Moltke LL, Greenblatt DJ, Giancarlo GM, Granda BW, Harmatz JS, Shader RI . Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos 2001; 29: 1102–1109.

    CAS  PubMed  Google Scholar 

  16. Herrlin K, Yasui-Furukori N, Tybring G, Widen J, Gustafsson LL, Bertilsson L . Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br J Clin Pharmacol 2003; 56: 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rochat B, Amey M, Gillet M, Meyer UA, Baumann P . Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human liver microsomes. Pharmacogenetics 1997; 7: 1–10.

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi K, Chiba K, Yagi T, Shimada N, Taniguchi T, Horie T et al. Identification of cytochrome P450 isoforms involved in citalopram N-demethylation by human liver microsomes. J Pharmacol Exp Ther 1997; 280: 927–933.

    CAS  PubMed  Google Scholar 

  19. Sindrup SH, Brosen K, Hansen MG, aes-Jorgensen T, Overo KF, Gram LF . Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther Drug Monit 1993; 15: 11–17.

    Article  CAS  PubMed  Google Scholar 

  20. Olesen OV, Linnet K . Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos 1997; 25: 740–744.

    CAS  PubMed  Google Scholar 

  21. Venkatakrishnan K, Greenblatt DJ, von Moltke LL, Schmider J, Harmatz JS, Shader RI . Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP 2C19 and 3A4. J Clin Pharmacol 1998; 38: 112–121.

    Article  CAS  PubMed  Google Scholar 

  22. Steimer W, Zopf K, von Amelunxen S, Pfeiffer H, Bachofer J, Popp J et al. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 2005; 51: 376–385.

    Article  CAS  PubMed  Google Scholar 

  23. Baumann P, Jonzier-Perey M, Koeb L, Kupfer A, Tinguely D, Schopf J . Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol 1986; 1: 102–112.

    Article  CAS  PubMed  Google Scholar 

  24. Olesen OV, Linnet K . Metabolism of the tricyclic antidepressant amitriptyline by cDNA-expressed human cytochrome P450 enzymes. Pharmacology 1997; 55: 235–243.

    Article  CAS  PubMed  Google Scholar 

  25. Nielsen KK, Brosen K, Hansen MG, Gram LF . Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms. Clin Pharmacol Ther 1994; 55: 518–527.

    Article  CAS  PubMed  Google Scholar 

  26. Nielsen KK, Brosen K, Gram LF . Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Danish University Antidepressant Group. Eur J Clin Pharmacol 1992; 43: 405–411.

    Article  CAS  PubMed  Google Scholar 

  27. Nielsen KK, Flinois JP, Beaune P, Brosen K . The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther 1996; 277: 1659–1664.

    CAS  PubMed  Google Scholar 

  28. Aymard G, Livi P, Pham YT, Diquet B . Sensitive and rapid method for the simultaneous quantification of five antidepressants with their respective metabolites in plasma using high-performance liquid chromatography with diode-array detection. J Chromatogr B Biomed Sci Appl 1997; 700: 183–189.

    Article  CAS  PubMed  Google Scholar 

  29. Rop PP, Viala A, Durand A, Conquy T . Determination of citalopram, amitriptyline and clomipramine in plasma by reversed-phase high-performance liquid chromatography. J Chromatogr 1985; 338: 171–178.

    Article  CAS  PubMed  Google Scholar 

  30. Kurzawski M, Gawronska-Szklarz B, Wrzesniewska J, Siuda A, Starzynska T, Drozdzik M . Effect of CYP2C19*17 gene variant on Helicobacter pylori eradication in peptic ulcer patients. Eur J Clin Pharmacol 2006; 62: 877–880.

    Article  CAS  PubMed  Google Scholar 

  31. Olesen OV, Linnet K . Studies on the stereoselective metabolism of citalopram by human liver microsomes and cDNA-expressed cytochrome P450 enzymes. Pharmacology 1999; 59: 298–309.

    Article  CAS  PubMed  Google Scholar 

  32. Schenk PW, van Vliet M, Mathot RA, van Gelder T, Vulto AG, van Fessem MA et al. The CYP2C19*17 genotype is associated with lower imipramine plasma concentrations in a large group of depressed patients. Pharmacogenomics J 2010; 10: 219–225.

    Article  CAS  PubMed  Google Scholar 

  33. Kirchheiner J, Brosen K, Dahl ML, Gram LF, Kasper S, Roots I et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–192.

    Article  CAS  PubMed  Google Scholar 

  34. Kirchheiner J, Bertilsson L, Bruus H, Wolff A, Roots I, Bauer M . Individualized medicine—implementation of pharmacogenetic diagnostics in antidepressant drug treatment of major depressive disorders. Pharmacopsychiatry 2003; 36 (Suppl 3): S235–S243.

    CAS  PubMed  Google Scholar 

  35. Bjerkenstedt L, Flyckt L, Overo KF, Lingjaerde O . Relationship between clinical effects, serum drug concentration and serotonin uptake inhibition in depressed patients treated with citalopram. A double-blind comparison of three dose levels. Eur J Clin Pharmacol 1985; 28: 553–557.

    Article  CAS  PubMed  Google Scholar 

  36. Peters EJ, Slager SL, Kraft JB, Jenkins GD, Reinalda MS, McGrath PJ et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS One 2008; 3: e1872.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge and appreciate the support from the DNA and HPLC technicians of the Clinical Chemistry department, St Jansdal Hospital. We thank the people of the Pharmacy Meerkanten, Ermelo for their co-operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J van der Weide.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vos, A., van der Weide, J. & Loovers, H. Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients. Pharmacogenomics J 11, 359–367 (2011). https://doi.org/10.1038/tpj.2010.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/tpj.2010.39

Keywords

This article is cited by

Search

Quick links