Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Proton-exchange membrane water electrolysers often rely on scarce iridium or ruthenium catalysts at the anode, as many low-cost, earth-abundant catalysts cannot withstand the harsh operational conditions. This Review discusses the state of the art in earth-abundant water oxidation catalysts and examines their degradation mechanisms at multiple levels.
The capability and importance of computational methods in organic chemistry is steadily increasing. This Review provides an overview of computational methods for the design of asymmetric catalysts, with the aim of avoiding specialist computational language to make the field more accessible to experimental chemists.
The merger of photocatalysis and transition metal catalysis has broadened the scope of chemical reactivity in organic synthesis. This Review provides an overview of the use of metallaphotoredox catalysis for sp3 C–H functionalizations that occur via single-electron, rather than hydrogen atom transfer.
Atropisomerism is an expanding target of asymmetric catalysis. In this Review, recent advances in atroposelective synthesis under catalytic control are highlighted with a focus on general strategies that provide high versatility and modularity.
The use of data science tools in catalysis research has experienced a surge in the past 10–15 years. This Review provides a holistic overview and categorization of the field across the various approaches and subdisciplines in catalysis.
The electrochemical synthesis of ammonia via the lithium-mediated reduction of N2 holds great promise to replace the carbon- and energy-intensive Haber–Bosch process. This Review discusses this approach and examines the critical role of the catalytic solid–electrolyte interphase formed on the electrode.