Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Research Briefing in 2024

Filter By:

Article Type
Year
  • Degradable poly(β-amino ester) (PAE) polymers can be used as a scalable alternative to microplastics in personal care products and nutrient delivery. This study demonstrates the effectiveness of PAE microparticles in skin exfoliation and nutrient protection, providing a potential eco-friendly solution to reduce microplastic pollution and its associated environmental and health impacts.

    Research Briefing
  • Industrial processes for the electrolytic production of ethylene from aqueous carbonate feedstocks are not well defined. Now, process simulations and a techno-economic analysis identify barriers to the future commercial viability of this technology and the key process requirements and advances needed to make the process feasible.

    Research Briefing
  • A protocol termed electrothermal chlorination is developed for the energy-efficient recovery of critical metals from electronic waste. The incorporation of direct electric heating into a chlorination process enables precise temperature control and rapid heating and cooling rates, facilitating metal separation based on subtle differences in thermodynamics as well as kinetic selectivity.

    Research Briefing
  • A protocol is demonstrated for the fabrication of dense and defect-free graphene current collectors on the hundred-meter scale. Owing to their high thermal conductivity and dense structures, these current collectors effectively prevent thermal runaway in high-energy pouch cells through the dissipation of localized heat and circumvention of undesirable side reactions, enhancing battery safety.

    Research Briefing
  • Metal–organic frameworks are promising materials for use as sustainable membrane technology. However, their use for liquid-phase separation is limited. We developed a metal–organic framework with topological defects to build membranes with high performance for molecular separation in methanol. The efficient and durable sieving of molecules through membrane modules indicates their potential for refining chemical products.

    Research Briefing
  • Emulsions underpin a wide range of important natural phenomena and many technological applications. However, it remains challenging to create emulsion droplets with specific internal structures. Now, a method has been developed to create macromolecular emulsions with custom architectures by applying non-equilibrium thermodynamic principles to condensate formation.

    Research Briefing
  • A structurally robust nanoporous carbon adsorbent that integrates a molecular-selective skin and an internal gas reservoir enables the adsorptive separation of propylene and propane. The surface sieving skin endows the adsorbent with competitive selectivity and the internal reservoir leads to a high propylene capacity, together facilitating the production of high-purity propylene.

    Research Briefing
  • Decarbonizing the steel industry is crucial but challenging. Now, an enzymatic method is introduced for converting carbon monoxide from industrial off-gases into formate, offering a path towards carbon-neutral steel production. The enzymatic process achieves high selectivity, and operation of a 10-liter-scale reactor with real industrial emissions indicates its scalability and practical applicability.

    Research Briefing
  • A self-driving lab, called Fast-Cat, is developed for the rapid, autonomous Pareto-front mapping of homogeneous catalysts in high-pressure, high-temperature gas–liquid reactions. The efficacy of Fast-Cat was demonstrated in performing Pareto-front mappings of phosphorus-based ligands for the hydroformylation of olefins.

    Research Briefing

Search

Quick links