Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Comment in 2024

Filter By:

Article Type
Year
  • Sharp distinctions often drawn between machine and biological intelligences have not tracked advances in the fields of developmental biology and hybrid robotics. We call for conceptual clarity driven by the science of diverse intelligences in unconventional spaces and at unfamiliar scales and embodiments that blur conventional categories.

    • Nicolas Rouleau
    • Michael Levin
    Comment
  • Large language model-based agentic systems can process input information, plan and decide, recall and reflect, interact and collaborate, leverage various tools and act. This opens up a wealth of opportunities within medicine and healthcare, ranging from clinical workflow automation to multi-agent-aided diagnosis.

    • Jianing Qiu
    • Kyle Lam
    • Eric J. Topol
    Comment
  • A new class of AI models, called foundation models, has entered healthcare. Foundation models violate several basic principles of the standard machine learning paradigm for assessing reliability, making it necessary to rethink what guarantees are required to establish warranted trust in them.

    • Thomas Grote
    • Timo Freiesleben
    • Philipp Berens
    Comment
  • Most research efforts in machine learning focus on performance and are detached from an explanation of the behaviour of the model. We call for going back to basics of machine learning methods, with more focus on the development of a basic understanding grounded in statistical theory.

    • Diego Marcondes
    • Adilson Simonis
    • Junior Barrera
    Comment
  • Speech technology offers many applications to enhance employee productivity and efficiency. Yet new dangers arise for marginalized groups, potentially jeopardizing organizational efforts to promote workplace diversity. Our analysis delves into three critical risks of speech technology and offers guidance for mitigating these risks responsibly.

    • Mike Horia Mihail Teodorescu
    • Mingang K. Geiger
    • Lily Morse
    Comment
  • The area under the receiver operating characteristic curve (AUROC) of the test set is used throughout machine learning (ML) for assessing a model’s performance. However, when concordance is not the only ambition, this gives only a partial insight into performance, masking distribution shifts of model outputs and model instability.

    • Michael Roberts
    • Alon Hazan
    • Carola-Bibiane Schönlieb
    Comment
  • Although federated learning is often seen as a promising solution to allow AI innovation while addressing privacy concerns, we argue that this technology does not fix all underlying data ethics concerns. Benefiting from federated learning in digital health requires acknowledgement of its limitations.

    • Marieke Bak
    • Vince I. Madai
    • Stuart McLennan
    Comment
  • Can non-state multinational tech companies counteract the potential democratic deficit in the emerging global governance of AI? We argue that although they may strengthen core values of democracy such as accountability and transparency, they currently lack the right kind of authority to democratize global AI governance.

    • Eva Erman
    • Markus Furendal
    Comment

Search

Quick links