Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Perspectives

Filter By:

  • Recent developments in bioengineering promise the possibility of new diagnostic and treatment strategies, novel industrial processes, and innovative approaches to thorny problems in fields such as nutrition, agriculture, and biomanufacturing. As modern genetics has matured and developed technologies of increasing power, debates over risk assessments and proper applications of the technology, and over who should have decision-making power over such issues, have become more prominent. Recently, some scientists have advocated that ethicists “step out of the way,” whereas others have called for greater ethical scrutiny, or even for moratoria on some lines of research1,2. As a community, however, we must together determine the proper application of these powerful biological tools. This paper, a consensus statement of a group of interdisciplinary delegates drawn from the top biotech-producing countries of the world, offers a set of ethical principles to contribute to the ethical conversation about human cellular biotechnological research moving forward.

    • Paul Root Wolpe
    • Karen S Rommelfanger
    Perspective
  • Modern biological research increasingly relies on image data as a primary source of information in unraveling the cellular and molecular mechanisms of life. The quantity and complexity of the data generated by state-of-the-art microscopes preclude visual or manual analysis and require advanced computational methods to fully explore the wealth of information. In addition to making bioimage analysis more efficient, objective, and reproducible, the use of computers improves the accuracy and sensitivity of the analyses and helps to reveal subtleties that may be unnoticeable to the human eye. Many methods and software tools have already been developed to this end, but there is still a long way to go before biologists can blindly trust automated measurements. Here, we summarize the current state of the art in bioimage analysis and provide a perspective on likely future developments.

    • Erik Meijering
    • Anne E Carpenter
    • Jean-Christophe Olivo-Marin
    Perspective
  • A long-held goal in sequencing has been to use a voltage-biased nanoscale pore in a membrane to measure the passage of a linear, single-stranded (ss) DNA or RNA molecule through that pore. With the development of enzyme-based methods that ratchet polynucleotides through the nanopore, nucleobase-by-nucleobase, measurements of changes in the current through the pore can now be decoded into a DNA sequence using an algorithm. In this Historical Perspective, we describe the key steps in nanopore strand-sequencing, from its earliest conceptualization more than 25 years ago to its recent commercialization and application.

    • David Deamer
    • Mark Akeson
    • Daniel Branton
    Perspective
  • The unprecedented number of fatalities in the PROPATRIA clinical trial using probiotics to treat patients with acute pancreatitis cast a shadow over the field. Bongaerts et al. provide rationales for the trial's high mortality rate and outline situations in which probiotic therapy may still be appropriate for this disease.

    • Ger P A Bongaerts
    • René S V M Severijnen
    Perspective
  • Organ-level physiology is recapitulated in vitro by culturing cells in perfused, microfluidic devices.

    • Sangeeta N Bhatia
    • Donald E Ingber
    Perspective

Search

Quick links