Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Researchers demonstrate quantum dot lasing using excitation by an electrically modulated (0.1–1% duty cycle), low-power continuous-wave laser diode, achieving lasing at a pump intensity just above 500 W cm−2 at 77 K and 3.6 kW cm−2 at room temperature.
Electrical tuning of the recombination zone in circularly polarized (CP) OLEDs enables switching the CP generation mechanism between normal and anomalous CP electroluminescence. This is exploited to electrically control the handedness of emitted CP light from the same device with the same enantiomer material.
A reconfigurable eight-user photonic network is realized by connecting two local four-user networks through a programmable 8 × 8-dimensional multi-port device. Multiplexed routing and swapping of qubit entanglement are demonstrated for all network configurations and channels.
Formation of a near-phase-pure two-dimensional perovskite at the buried interface of perovskite solar cells enables improved crystallization and defect passivation, resulting in devices with a certified power conversion efficiency of 26.02%. Ninety-five per cent of the initial PCE is maintained after 1,000 hours of operation.
The additive molecule DHHB enables UV shielding, chemical passivation and strain regulation at the buried interface of perovskite solar cells. Small-area devices achieve a power conversion efficiency of 26.47%, 96% of which is maintained after 1,132 h of continuous operation.
The second plateau in high-harmonic generation from liquids is due to off-site recombination of electrons, facilitated by the spatial delocalization of electron–hole wavefunctions.
An all-optical method involving third-harmonic Faraday rotation is used to probe the breaking of time-reversal symmetry in mono- and bilayer transition metal dichalcogenide WS2.
The researchers demonstrate parallel optical matrix–matrix multiplication, which enables fully parallel tensor processing through a single coherent light propagation. The approach provides a scalable, high-efficiency foundation for advancing next-generation optical computing.
Researchers demonstrate phase-stable sub-cycle self-compressed light transients, as well as their sampling down to half of an optical cycle, and determine their waveform phase offset. They apply the transients to soft X-ray high-harmonic generation and attosecond X-ray absorption spectroscopy.
A resource-efficient characterization method to completely characterize multimode second-order nonlinear optical quantum processes is demonstrated, satisfying the required physical condition. Scaling quadratically with the mode number, it enables complete 16-mode analysis.
Red, green and blue organic field-effect light-emitting transistors in which charge-carrier transport and light emission are spatially separated to improve exciton management and device efficiency are reported.
A uni-travelling-carrier photodiode with 206-GHz bandwidth, bandwidth–efficiency product surpassing 130 GHz and external responsivity of 0.81 A W−1 is demonstrated. Radio-frequency power exceeding –5 dBm and single-line 120-Gbps wireless transmission across 54 m were achieved, without low-noise amplifiers.
Engineering the perovskite–electrical contact interface with sodium heptafluorobutyrate reduces interfacial defects and improves charge transport in perovskite solar cells. Functionalized devices deliver a certified power conversion efficiency of 26.96%, which is fully retained after 1,200 h of continuous operation under 1-sun illumination.
The quantum fusion of two independent 10-user networks is demonstrated based on multi-user entanglement swapping. Active temporal and wavelength multiplexing schemes are developed to merge the two networks into a larger network with 18 users in the quantum correlation layer.
A vapour post-treatment strategy enables fully printed carbon-electrode perovskite solar modules with an area of about 50 cm2 and a certified power conversion efficiency of 19.26%. The modules show no performance decay after 1,000 h of continuous operation at 65 °C.
The quantum noise of Kerr combs is found to exhibit oscillatory lattice dynamics through state transitions, with implications for squeezing and comb formation.