Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
The ultrafast charge-transfer dynamics that occur at a graphene/silicon carbide interface are studied by a laser-based method. When electrons in graphene are excited by femtosecond laser pulses, they quickly leave the graphene and move to the silicon carbide on a timescale of <300 attoseconds. Ultrafast charge transfer in such interfaces could offer opportunities for constructing petahertz electronics in the future.
Low-loss composite systems based on integrating transition metal dichalcogenide monolayers on silicon nitride waveguides exhibit an unexpectedly strong electro-refractive response at near-infrared wavelengths, which is crucial for optical communications.
Technology borrowed from electron accelerator and beam physics looks set to push the performance of ultrafast-electron-diffraction-based pump–probe studies of matter.
The news that superconducting nanowire detectors can detect single photons with a timing precision of just a few picoseconds will benefit applications ranging from sensing to quantum communications.
Femtosecond laser pulses are sent to a graphene/SiC interface to investigate photoinduced charge transfer from graphene to SiC. A charge transfer time of 300 attoseconds is obtained via laser-pulse-duration-dependent saturation fluence determination.
Einstein–Podolsky–Rosen entangled beams are sent to a 0.5-m-long optical resonator. To reduce quantum noise in a frequency-dependent manner in the gravitational detector, two-mode frequency-dependent squeezed vacuum states are generated.
Einstein–Podolsky–Rosen entangled beams are sent to a 2.5-m-long cavity mimicking the signal recycling cavity of a gravitational-wave detector. By controlling the wavelength detuning, frequency-dependent squeezed vacuum states were generated.
An ultrafast electron diffraction facility with an overall temporal resolution of 31 fs root mean square is developed. Even for a charge as high as 0.6 pC, the electron bunch duration and timing jitter are 25 fs and less than 10 fs, respectively.
Knowledge about detection latency provides a guideline to reduce the timing jitter of niobium nitride superconducting nanowire single-photon detectors. A timing jitter of 2.6 ps at visible wavelength and 4.3 ps at 1,550 nm is achieved.
Strong electrorefractive effects in semiconductor transition metal dichalcogenides (TMDs) at near-infrared wavelengths, where the TMDs are transparent, are observed and used to demonstrate photonic devices based on a composite SiN–TMD platform with large phase modulation, minimal induced loss and low electrical power consumption.