Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 87 results
Advanced filters: Author: Angela R. Shih Clear advanced filters
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Genome-wide association studies (GWAS) have improved our understanding of the genetic basis of lung adenocarcinoma but known susceptibility variants explain only a small fraction of the familial risk. Here, the authors perform a two-stage GWAS and report 12 novel genetic loci associated with lung adenocarcinoma in East Asians.

    • Jianxin Shi
    • Kouya Shiraishi
    • Qing Lan
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-17
  • Understanding the pathology in the lungs of patients with COVID-19 might provide clues as to the susceptibility of patients and how the SARS-CoV-2 virus can be fatal. Here the authors analyze cadaveric pulmonary tissue and show one group with high viral load, early death, inflammation and inflammatory damage, and another with low viral load, longer duration of disease, and more M2-like polarization and fibrotic lung damage.

    • Niyati Desai
    • Azfar Neyaz
    • Vikram Deshpande
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • The Cancer Genome Atlas Research Network report integrated genomic and molecular analyses of 164 squamous cell carcinomas and adenocarcinomas of the oesophagus; they find genomic and molecular features that differentiate squamous and adenocarcinomas of the oesophagus, and strong similarities between oesophageal adenocarcinomas and the chromosomally unstable variant of gastric adenocarcinoma, suggesting that gastroesophageal adenocarcinoma is a single disease entity.

    • Jihun Kim
    • Reanne Bowlby
    • Jiashan Zhang
    ResearchOpen Access
    Nature
    Volume: 541, P: 169-175
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Spatial transcriptomics was combined with single-nucleus RNA sequencing to annotate healthy and fibrotic human livers, improving spatial resolution of hepatocytes and receptor-ligand interactions and identifying cell populations that expand with injury.

    • Brianna R. Watson
    • Biplab Paul
    • Alan C. Mullen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • Chronic infection with SARS-CoV-2 leads to the emergence of viral variants that show reduced susceptibility to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma.

    • Steven A. Kemp
    • Dami A. Collier
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 592, P: 277-282
  • Sera from vaccinated individuals and some monoclonal antibodies show a modest reduction in neutralizing activity against the B.1.1.7 variant of SARS-CoV-2; but the E484K substitution leads to a considerable loss of neutralizing activity.

    • Dami A. Collier
    • Anna De Marco
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 593, P: 136-141
  • The spatial organization of cells in solid tumors is considered to be important for immune response and response to therapy. Here the authors use multiomics including spatial transcriptomics of human lung tumors prior to patients being treated and show among other things an association of stem-immunity hubs rich in stem-like CD8+ T cells with positive response to anti-PD-1 therapy.

    • Jonathan H. Chen
    • Linda T. Nieman
    • Nir Hacohen
    Research
    Nature Immunology
    Volume: 25, P: 644-658
  • Understanding how SARS-CoV-2 gains initial entry into the human body is a key step towards the development of prophylaxes and therapeutics for COVID-19. Here, the authors show that ACE2, the receptor for SARS-CoV-2, is abundantly expressed in the motile cilia of the human nasal and respiratory tract and is not affected by the use of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers.

    • Ivan T. Lee
    • Tsuguhisa Nakayama
    • Peter K. Jackson
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Reduced glomerular filtration rate (eGFR) is a hallmark of chronic kidney disease. Here, Pattaro et al. conduct a meta-analysis to discover several new loci associated with variation in eGFR and find that genes associated with eGFR loci often encode proteins potentially related to kidney development.

    • Cristian Pattaro
    • Alexander Teumer
    • Caroline S. Fox
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-19
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Tissue chips with matured human heart, liver, bone and skin tissue niches linked by recirculating vascular flow recapitulate interdependent functions of these organs.

    • Kacey Ronaldson-Bouchard
    • Diogo Teles
    • Gordana Vunjak-Novakovic
    Research
    Nature Biomedical Engineering
    Volume: 6, P: 351-371
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • ER+ breast cancer patients treated with endocrine therapies often acquire resistance and develop metastasis. In this study, the authors demonstrate that endocrine therapies can promote the self-renewal of CD133hi/ERlodrug resistant cells with metastatic potential driven through the IL6-Notch3 axis activation.

    • Pasquale Sansone
    • Claudio Ceccarelli
    • Jacqueline Bromberg
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-10
  • Michael Taylor, Marco Marra and colleagues analyze spatial tumor heterogeneity in 9 medulloblastomas, 16 high-grade gliomas and 10 renal cell carcinomas, using a combination of transcriptomic and genomic profiling of multiregional biopsies. They find that medulloblastomas have spatially homogeneous transcriptomes, whereas somatic mutations that affect genes suitable for targeted therapeutics are spatially heterogeneous.

    • A Sorana Morrissy
    • Florence M G Cavalli
    • Michael D Taylor
    Research
    Nature Genetics
    Volume: 49, P: 780-788
  • This paper describes molecular subtypes of cervical cancers, including squamous cell carcinoma and adenocarcinoma clusters defined by HPV status and molecular features, and distinct molecular pathways that are activated in cervical carcinomas caused by different somatic alterations and HPV types.

    • Robert D. Burk
    • Zigui Chen
    • David Mutch
    ResearchOpen Access
    Nature
    Volume: 543, P: 378-384
  • To address the question of whether a recurrent tumour is genetically similar to the tumour at diagnosis, the evolution of medulloblastoma has been studied in both an in vivo mouse model of clinical tumour therapy as well as in humans with recurrent disease; targeted tumour therapies are usually based on targets present in the tumour at diagnosis but the results from this study indicate that post-treatment recurring tumours (compared with the tumour at diagnosis) have undergone substantial clonal divergence of the initial dominant tumour clone.

    • A. Sorana Morrissy
    • Livia Garzia
    • Michael D. Taylor
    Research
    Nature
    Volume: 529, P: 351-357