Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 284 results
Advanced filters: Author: Brian Choi Clear advanced filters
  • Federated learning (FL) algorithms have emerged as a promising solution to train models for healthcare imaging across institutions while preserving privacy. Here, the authors describe the Federated Tumor Segmentation (FeTS) challenge for the decentralised benchmarking of FL algorithms and evaluation of Healthcare AI algorithm generalizability in real-world cancer imaging datasets.

    • Maximilian Zenk
    • Ujjwal Baid
    • Spyridon Bakas
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Eukaryotic algae and cyanobacteria can produce hydrogen in the presence of little or no oxygen. Here, the authors show that two microalgal strains are capable of producing hydrogen under aerobic conditions, and provide new insights into the natural evolution of oxygen-tolerant hydrogenase.

    • Jae-Hoon Hwang
    • Hyun-Chul Kim
    • Byong-Hun Jeon
    Research
    Nature Communications
    Volume: 5, P: 1-6
  • A survey across 90 societies reveals that variation and change in everyday norms are explained by a single value dimension: the priority societies place on individualizing versus binding moral concerns.

    • Kimmo Eriksson
    • Pontus Strimling
    • Paul A. M. Van Lange
    ResearchOpen Access
    Communications Psychology
    Volume: 3, P: 1-14
  • Genome-wide association studies (GWAS) have improved our understanding of the genetic basis of lung adenocarcinoma but known susceptibility variants explain only a small fraction of the familial risk. Here, the authors perform a two-stage GWAS and report 12 novel genetic loci associated with lung adenocarcinoma in East Asians.

    • Jianxin Shi
    • Kouya Shiraishi
    • Qing Lan
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-17
  • Using data from a single time point, passenger-approximated clonal expansion rate (PACER) estimates the fitness of common driver mutations that lead to clonal haematopoiesis and identifies TCL1A activation as a mediator of clonal expansion.

    • Joshua S. Weinstock
    • Jayakrishnan Gopakumar
    • Siddhartha Jaiswal
    Research
    Nature
    Volume: 616, P: 755-763
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The goals, resources and design of the NHLBI Trans-Omics for Precision Medicine (TOPMed) programme are described, and analyses of rare variants detected in the first 53,831 samples provide insights into mutational processes and recent human evolutionary history.

    • Daniel Taliun
    • Daniel N. Harris
    • Gonçalo R. Abecasis
    ResearchOpen Access
    Nature
    Volume: 590, P: 290-299
  • A meta-analysis of genome-wide association studies of type 2 diabetes (T2D) identifies more than 600 T2D-associated loci; integrating physiological trait and single-cell chromatin accessibility data at these loci sheds light on heterogeneity within the T2D phenotype.

    • Ken Suzuki
    • Konstantinos Hatzikotoulas
    • Eleftheria Zeggini
    ResearchOpen Access
    Nature
    Volume: 627, P: 347-357
  • Systematic base-editing and computational screens identify specific cysteine residues on VPS35 in the retromer complex as key sensors that decrease mitochondrial translation in response to reactive oxygen species signals.

    • Junbing Zhang
    • Md Yousuf Ali
    • Liron Bar-Peled
    Research
    Nature
    Volume: 641, P: 1048-1058
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole genome sequences enable discovery of rare variants which may help to explain the heritability of common diseases. Here the authors find that ultra-rare variants explain ~50% of coronary artery disease (CAD) heritability and highlight several functional processes including cell type-specific regulatory mechanisms as key drivers of CAD genetic risk.

    • Ghislain Rocheleau
    • Shoa L. Clarke
    • Ron Do
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • The influence of X chromosome genetic variation on blood lipids and coronary heart disease (CHD) is not well understood. Here, the authors analyse X chromosome sequencing data across 65,322 multi-ancestry individuals, identifying associations of the Xq23 locus with lipid changes and reduced risk of CHD and diabetes mellitus.

    • Pradeep Natarajan
    • Akhil Pampana
    • Gina M. Peloso
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-14
  • The X-ray crystal structure of the human β2 adrenergic receptor, a G-protein-coupled receptor, in an agonist-bound 'active' state is solved. Comparison of this structure with a previously published structure of the same GPCR in an inactive state indicates that minor changes in the binding pocket of the protein lead to major changes elsewhere — there is a large outward movement of the cytoplasmic end of one of the transmembrane segments and rearrangements of two other transmembrane segments. This structure provides insights into the process of agonist binding and activation.

    • Søren G. F. Rasmussen
    • Hee-Jung Choi
    • Brian K. Kobilka
    Research
    Nature
    Volume: 469, P: 175-180
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The pairing mechanism in kagome superconductors is still not fully understood. Now, CsV3Sb5, which belongs to this family, is shown to have orbital-selective pairing with two distinct superconducting domes that are not separated by any phase boundary.

    • Md Shafayat Hossain
    • Qi Zhang
    • M. Zahid Hasan
    Research
    Nature Physics
    Volume: 21, P: 556-563
  • Insufficient AHR activation has been suggested in SLE, and augmenting AHR activation therapeutically may prevent CXCL13+ TPH/TFH differentiation and the subsequent recruitment of B cells and formation of lymphoid aggregates in inflamed tissues.

    • Calvin Law
    • Vanessa Sue Wacleche
    • Deepak A. Rao
    Research
    Nature
    Volume: 631, P: 857-866
  • Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here, the authors present the largest FL study to-date to generate an automatic tumor boundary detector for glioblastoma.

    • Sarthak Pati
    • Ujjwal Baid
    • Spyridon Bakas
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-17
  • Although the common genetic variants contributing to blood lipid levels have been studied, the contribution of rare variants is less understood. Here, the authors perform a rare coding and noncoding variant association study of blood lipid levels using whole genome sequencing data.

    • Margaret Sunitha Selvaraj
    • Xihao Li
    • Pradeep Natarajan
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-18
  • Combinatorial experimental and bioinformatics methods can be used to analyse function and specificity of CD8 T cells. Here the authors propose a multiomic analysis framework Antigen-TCR Pairing and Multiomic Analysis of T cell (APMAT) to relate TCR specificity to transcriptomic phenotype indicating associations with physicochemical features.

    • Jingyi Xie
    • Daniel G. Chen
    • James R. Heath
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Genomic studies often lack representation from diverse populations, limiting equitable insights. Here, the authors show that the BIG Initiative captures extensive genetic diversity and reveals ancestry-linked health disparities in a community-based Mid-South cohort.

    • Silvia Buonaiuto
    • Franco Marsico
    • Vincenza Colonna
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12