Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 9714 results
Advanced filters: Author: C. M. Hall Clear advanced filters
  • The authors study a topological insulator (TI) sandwiched between two magnetic TIs. By keeping one of the magnetic TIs insulating, while tuning the other one into a metallic regime, they find half quantized anomalous Hall conductance, a boundary signature consistent with a quantized axion field.

    • Jiayuan Hu
    • Binbin Wang
    • Di Xiao
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-8
  • The authors report an experimental study of the Hall effect measuring electrical quantities in ultracold fermionic quantum simulators. This provides a way forward in measuring transport properties in these platforms and verifying long-standing theoretical predictions.

    • T.-W. Zhou
    • T. Beller
    • L. Fallani
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-7
  • Vortex dynamics and mutual friction in quantum fluids are intimately connected to the fundamental properties of superfluids. Here, the authors reveal previously unexplored mechanisms underlying the mutual friction coefficients in ultracold Fermi superfluids in the unitary limit, suggesting bound quasiparticles within the vortex core play a significant role.

    • N. Grani
    • D. Hernández-Rajkov
    • G. Roati
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • A new platform comprising large-scale 2D arrays of quantum dots patterned with sub-nanometre precision, with each quantum dot defined by tens of phosphorus atoms doped into silicon, allows for analogue simulation of quantum materials on arbitrary lattices.

    • M. B. Donnelly
    • Y. Chung
    • M. Y. Simmons
    ResearchOpen Access
    Nature
    Volume: 650, P: 574-579
  • The dynamics of hole-conjugated fractional quantum Hall states is poorly understood due to the limitations of current experimental probes. Here the authors study the high-frequency dynamics of edge modes at filling factor 2/3, precisely identifying the tunneling charge and damping of constituent charge modes.

    • A. De
    • C. Boudet
    • D. C. Glattli
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • Symmetry breaking is key to numerous notable effects, for instance, the emergence of a Rashba interaction at interfaces between two materials. Here, Zhang, Ding, and coauthors succeed in breaking in-plane mirror symmetries via crystallographic engineering, and observe a giant non-linear Hall effect and current induced magnetization at room temperature.

    • Hang-Bo Zhang
    • Zhen-Yu Ding
    • Ming-Min Yang
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-11
  • The anomalous Hall effect is a macroscopic manifestation of a quantum mechanical effect. Here, Uelandet al. report the observation of a high Hall conductivity in the heavy-fermion compound UCu5, a metallic system, and explain its origin in terms of geometric frustration effects.

    • B.G. Ueland
    • C.F. Miclea
    • J.D. Thompson
    Research
    Nature Communications
    Volume: 3, P: 1-6
  • Spin-orbit torques are a well-established method for the control of magnetization, the key ingredients for conventional spin-orbit torques being a conductive material with a strong spin-orbit interaction. Here, Tang, Zhang and Cheng show that in antiferromagnetic insulators, the topological phase can support a unique form of Neel spin-orbit torque driven by adiabatic currents, which suppresses joule heating.

    • Junyu Tang
    • Hantao Zhang
    • Ran Cheng
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • The spin Hall effect and its inverse allow conversion between charge and spin currents in both magnetic and nonmagnetic materials. Weiet al.observe an anomaly in the temperature dependence of the inverse spin Hall effect, which suggests that it can also be used as a sensor for very small magnetic moments.

    • D.H. Wei
    • Y. Niimi
    • Y. Otani
    Research
    Nature Communications
    Volume: 3, P: 1-5
  • Intrinsic anomalous Hall effect has been observed in twisted graphene multilayers, but these structures are typically not energetically favorable. This study extends these observations to Bernal-stacked tetralayer graphene, which is the most stable configuration of four-layer graphene.

    • Hao Chen
    • Arpit Arora
    • Kian Ping Loh
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-6
  • Using a system to adjust the strength of cavity vacuum fields penetrating a Hall bar, a study describes the effect of the vacuum field of a cavity on electronic correlations in quantum Hall systems.

    • Josefine Enkner
    • Lorenzo Graziotto
    • Jérôme Faist
    ResearchOpen Access
    Nature
    Volume: 641, P: 884-889
  • A large-twist-angle bilayer graphene platform exhibits a quantized ratio of displacement to magnetic field at Landau-level crossings, offering a route to high-resolution cryogenic magnetometry.

    • Baojuan Dong
    • Kai Zhao
    • Zheng Vitto Han
    ResearchOpen Access
    Nature Sensors
    Volume: 1, P: 172-180
  • Graphene was one of the first materials proposed to host the quantum spin Hall effect. However, its weak intrinsic spin-orbit interaction means that observing such an effect requires modifying the graphene band structure. Here, Ghiasi et al. combine graphene with CrPS4 and detect quantum spin Hall states at zero magnetic field.

    • Talieh S. Ghiasi
    • Davit Petrosyan
    • Herre S. J. van der Zant
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • The current known two-dimensional topological insulators with small band gaps limit the potential for room temperature applications. Here, Chen et al. observe a sizable gap of 129 meV in a 1T'-WSe2 single layer grown on bilayer graphene with in-gap edge state near the layer boundary.

    • P. Chen
    • Woei Wu Pai
    • T.-C. Chiang
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-7
  • Metamaterials enable the control and manipulation of light on subwavelength scales, allowing numerous optical device applications. Here, the authors show the selective excitation of spatially confined modes in an anisotropic hyperbolic metamaterial, based on the photonic spin Hall effect.

    • Polina V. Kapitanova
    • Pavel Ginzburg
    • Anatoly V. Zayats
    Research
    Nature Communications
    Volume: 5, P: 1-8
  • Previous work has shown that helical domain walls can form between states of different spin-polarization during a ferromagnetic spin transition in the fractional quantum Hall regime. Here, the authors study the transport through a single helical domain wall and find strong deviations from a simplified theory of weakly interacting edge channels.

    • Ying Wang
    • Vadim Ponomarenko
    • Leonid P. Rokhinson
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-6
  • Superlattices, with a length scale and structure that differs from the parent lattice of the host material, are well-known to allow for remarkable new electronic and magnetic properties. Here, Xie et al. synthesize Cr1/4TaS2, and find that it exhibits an unusual anomalous Hall effect below the Néel temperature even in stoichiometric high-quality crystals.

    • Lilia S. Xie
    • Shannon S. Fender
    • D. Kwabena Bediako
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • The complex electronic motion in the quantum Hall regime in semiconductors has so far eluded analysis of its microscopic structure. Here, the authors use scanning gate microscopy to measure the spatial structure of transport inside a metal in this regime, opening the way for localized manipulation of the electronic states.

    • B. Hackens
    • F. Martins
    • V. Bayot
    Research
    Nature Communications
    Volume: 1, P: 1-6
  • Magnetically intercalated transition metal dichalcogenides provide a platform to study the interplay of magnetism, electronic band structures, and correlations. Here the authors demonstrate a nearly magnetization-free anomalous Hall effect, collinear antiferromagnetism and non-Fermi liquid behavior in V1/3NbS2.

    • Mayukh Kumar Ray
    • Mingxuan Fu
    • Satoru Nakatsuji
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • The study shows a micron-scale polariton structure where an artificial gauge field creates topological, non-reciprocal edge transport without strong magnetic fields, overcoming key limits for topological polariton lasers and devices.

    • Simon Widmann
    • Jonas Bellmann
    • Sebastian Klembt
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-10
  • A technique that allows the electrical detection of spin-polarized transport in semiconductors without disturbing the spin-polarized current or using magnetic elements has now been demonstrated. The approach could lead to the integration of spintronics elements into semiconductor microelectronic circuits.

    • J. Wunderlich
    • A. C. Irvine
    • T. Jungwirth
    Research
    Nature Physics
    Volume: 5, P: 675-681
  • Graphene on boron nitride gives rise to a moiré superlattice displaying the Hofstadter butterfly: a fractal dependence of energy bands on external magnetic fields. Now, by means of capacitance spectroscopy, further aspects of this system are revealed—most notably, suppression of quantum Hall antiferromagnetism at particular commensurate magnetic fluxes.

    • G. L. Yu
    • R. V. Gorbachev
    • A. Mishchenko
    Research
    Nature Physics
    Volume: 10, P: 525-529
  • Monolayer graphene in the quantum Hall regime exhibits a third-order nonlinear Hall response, which is robust against variations in magnetic field and temperature and provides insights into the interaction of chiral edge states.

    • Pan He
    • Hiroki Isobe
    • Jian Shen
    Research
    Nature Nanotechnology
    Volume: 19, P: 1460-1465
  • A magnetoresistance effect that occurs in a platinum layer deposited on a magnon junction consisting of two insulating magnetic yttrium iron garnet layers separated by an antiferromagnetic nickel oxide spacer layer could be used to create spintronic and magnonic devices that are free from Joule heating.

    • C. Y. Guo
    • C. H. Wan
    • X. F. Han
    Research
    Nature Electronics
    Volume: 3, P: 304-308
  • It is predicted that fractionally charged skyrmions, topologically protected vortex-like spin configurations, may exist in systems exhibiting fractional quantum Hall states. Here, the authors demonstrate the existence of such objects in GaAs single quantum wells.

    • Ajit C. Balram
    • U. Wurstbauer
    • J. K. Jain
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-7
  • Fractional quantum Hall states in 2D electron gases arise due to strong electron-electron interactions, which makes a general theoretical understanding difficult. Fu et al. present data showing the ν = 5/3 quantum Hall state has a 3/2 plateau in the diagonal resistance that has not been captured by existing models.

    • Hailong Fu
    • Yijia Wu
    • Xi Lin
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-6
  • Non-local transport measurements on mercury telluride quantum wells show clear signatures of the ballistic spin Hall effect. The ballistic nature of the experiment allows the observed effect to be interpreted as a direct consequence of the band structure of these semiconductor nanostructures, rather that being caused by impurity scattering.

    • C. Brüne
    • A. Roth
    • L. W. Molenkamp
    Research
    Nature Physics
    Volume: 6, P: 448-454
  • Andreev reflection is normally known to occur at a metal-superconductor interface. Here, Hashisaka et al. observe an Andreev-like process in a narrow junction between fractional and integer quantum Hall states originating from a topological quantum many-body effect instead of superconductivity.

    • M. Hashisaka
    • T. Jonckheere
    • K. Muraki
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-7
  • Dirac fermions at apnjunction can exhibit a wide variety of unusual properties. Here, the authors investigate the dynamics of such fermions in a graphene junction using shot noise measurements and demonstrate the crucial role of junction length.

    • N. Kumada
    • F. D. Parmentier
    • P. Roulleau
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-5
  • Fractionally charged excitations at zero magnetic field in twisted MoTe2 bilayers, a recently discovered fractional quantum anomalous Hall system, are observed via anyon-trions, excitonic complexes formed by binding a trion to a fractional charge.

    • Weijie Li
    • Christiano Wang Beach
    • Xiaodong Xu
    Research
    Nature
    P: 1-6
  • Ohmic contacts to n-type molybdenum disulfide can be created over a temperature range from millikelvins to 300 K using a window-contacted technique, which leads to evidence for fractional quantum Hall states at filling fractions of 4/5 and 2/5 in the lowest Landau levels of bilayer molybdenum disulfide devices.

    • Siwen Zhao
    • Jinqiang Huang
    • Zheng Vitto Han
    ResearchOpen Access
    Nature Electronics
    Volume: 7, P: 1117-1125
  • The roles of orbitofrontal and cingulate cortex in emotional decisions remain unclear. Here the authors show distinct timing between caudal orbitofrontal and cingulate signals, that orbitofrontal stimulation increases avoidance, and that physiological responses mirror behavior.

    • Georgios K. Papageorgiou
    • Ken-ichi Amemori
    • Ann M. Graybiel
    ResearchOpen Access
    Nature Communications
    P: 1-21
  • 2D transition metal ditellurides exhibit nontrivial topological phases, but the controlled bottom-up synthesis of these materials is still challenging. Here, the authors report the layer-by-layer growth of large-area bilayer and trilayer 1T’ MoTe2 films, showing thickness-dependent ferroelectricity and nonlinear Hall effect.

    • Teng Ma
    • Hao Chen
    • Kian Ping Loh
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-10
  • Disorder may play a dominant role in determining the nonlinear Hall effect in a topological material. Here, Du et al. derive formulas of the nonlinear Hall conductivity and construct the general scaling law of the nonlinear Hall effect in a tilted two dimensional Dirac model.

    • Z. Z. Du
    • C. M. Wang
    • X. C. Xie
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-6
  • The quantum Hall effect takes place in a two-dimensional electron gas under a strong magnetic field and involves current flow along the edges of the sample. In the fractional regime, counter-propagating modes that carry energy but not charge — the so-called neutral modes — have been predicted but never observed. These authors report the first direct observation of these elusive modes.

    • Aveek Bid
    • N. Ofek
    • D. Mahalu
    Research
    Nature
    Volume: 466, P: 585-590
  • Noncoplanar magnets are promising for spintronics but are rare and challenging to find. Here, the authors provide a chemical design strategy to produce materials with noncoplanar magnetic orders, and strong signatures of their magnetism in the Hall effect.

    • Grigorii Skorupskii
    • Fabio Orlandi
    • Leslie M. Schoop
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-11
  • Energy relaxation crucially impacts transport properties of mesoscopic devices. Here the authors show that energy can be distributed between distant parts of the sample, which may provide a resolution to an outstanding puzzle concerning energy conservation in transport through quantum Hall edges.

    • T. Krähenmann
    • S. G. Fischer
    • Yigal Meir
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-6
  • A superconductor placed near a quantum Hall edge can show emergent excitations with a range of exotic features. For instance, such heterostructures are predicted to exhibit non-local signatures that are direct extensions of ‘Andreev reflection’.

    • David J. Clarke
    • Jason Alicea
    • Kirill Shtengel
    Research
    Nature Physics
    Volume: 10, P: 877-882