A magnetic superhydrophobic tubular actuator for water transport has been designed and successfully demonstrated. Under the control of an externally applied magnetic field, the actuator could deform correspondingly and propel the water droplet in the tube to move forward with a high speed up to 16.1 cm/s, which is the highest velocity measured for water transport in a closed actuator system. Several representative liquids (i.e., phosphate buffer solution, artificial urine, and sweat) widely used in biomedical engineering have also been achieved to transport in the tubular actuator with negligible liquid loss under an applied magnetic field.
- Fangyihan Xiong
- Liyun Zhang
- Fan Xia