Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal/MXene composites via in situ reduction

Abstract

Metal/two-dimensional substrate composites offer a rich library of materials that can have application in catalysis, sensing, biotechnology and other fields. In situ reduction deposition provides a scalable method for fabricating metal/MXene composites, but the rational control of metal nanostructures growth on MXene remains difficult. Here a strategy for the in situ reduction deposition of various metals (Au, Pd, Ag, Pt, Rh, Ru and Cu) on Ti3C2Tx MXene is demonstrated. This study uncovers the guiding principles of the metal deposition process on MXene nanosheets, including the influence of redox potential, metal coordination and lattice mismatch. A series of metal/MXene composites with fine-tuned structures were constructed based on these guiding principles, such as Pd@Au-Edge/Ti3C2Tx, Pt@Au-Edge/Ti3C2Tx, Au@Ag@Au-Surface/Ti3C2Tx and Ag@Pd@Au-Edge/Ti3C2Tx. In addition, the in situ reduction strategy can be extended to other MXene materials, such as Mo2CTx, V2CTx, Ti3CNTx, Nb4C3Tx and Mo2TiC2Tx, which allows the creation of metal/MXene composites with versatile and customizable nanostructures for a wide range of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A preliminary exploration of in situ reduction processes—nucleation and growth.
Fig. 2: Ti leaching during in situ reducing processes.
Fig. 3: Selectivity of the deposition site of Au.
Fig. 4: Size distribution of Pd.
Fig. 5: Summary of in situ reducing deposition processes.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available in the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Dai, Y. et al. Broadband plasmon-enhanced four-wave mixing in monolayer MoS2. Nano Lett. 21, 6321–6327 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, Y. et al. Superior plasmonic photodetectors based on Au@MoS2 core–shell heterostructures. ACS Nano 11, 10321–10329 (2017).

    CAS  PubMed  Google Scholar 

  3. Park, C. et al. Confinement of ultrasmall bimetallic nanoparticles in conductive metal–organic frameworks via site-specific nucleation. Adv. Mater. 33, 2101216 (2021).

    CAS  Google Scholar 

  4. Cho, C. et al. Strain-resilient electrical functionality in thin-film metal electrodes using two-dimensional interlayers. Nat. Electron. 4, 126–133 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zavala, L. A. et al. Direct evidence of the role of Co or Pt, Co single-atom promoters on the performance of MoS2 nanoclusters for the hydrogen evolution reaction. ACS Catal. 13, 1221–1229 (2023).

    CAS  Google Scholar 

  6. Shi, Z., Ge, Y., Yun, Q. & Zhang, H. Two-dimensional nanomaterial-templated composites. Acc. Chem. Res. 55, 3581–3593 (2022).

    CAS  PubMed  Google Scholar 

  7. Sun, Y. et al. Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nat. Chem. 12, 284–293 (2020).

    CAS  PubMed  Google Scholar 

  8. Li, Z. et al. Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349–355 (2018).

    CAS  Google Scholar 

  9. Wang, M. et al. Site-specified two-dimensional heterojunction of Pt nanoparticles/metal–organic frameworks for enhanced hydrogen evolution. J. Am. Chem. Soc. 143, 16512–16518 (2021).

    CAS  PubMed  Google Scholar 

  10. Wei, Z. et al. Tripodal Pd metallenes mediated by Nb2C MXenes for boosting alkynes semihydrogenation. Nat. Commun. 14, 661 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng, R. et al. Epitaxial ultrathin Pt atomic layers on CrN nanoparticle catalysts. Adv. Mater. 36, 2309251 (2024).

    CAS  Google Scholar 

  12. Tan, J., Li, S., Liu, B. & Cheng, H.-M. Structure, preparation, and applications of 2D material-based metal-semiconductor heterostructures. Small Struct. 2, 2000093 (2021).

    CAS  Google Scholar 

  13. Sun, Y. et al. Enhancing hydrogen evolution reaction activity of palladium catalyst by immobilization on MXene nanosheets. ACS Nano 18, 6243–6255 (2024).

    CAS  PubMed  Google Scholar 

  14. Li, X. et al. Controllable sulfurization of MXenes to in-plane multi-heterostructures for efficient sulfur redox kinetics. Adv. Energy Mater. 14, 2303389 (2024).

    CAS  Google Scholar 

  15. Zhao, Y. et al. Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions. Chem. Soc. Rev. 52, 3215–3264 (2023).

    CAS  PubMed  Google Scholar 

  16. Li, X. et al. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022).

    PubMed  Google Scholar 

  17. Dey, A. et al. Doped MXenes—a new paradigm in 2D systems: synthesis, properties and applications. Prog. Mater Sci. 139, 101166 (2023).

    CAS  Google Scholar 

  18. VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, 1581 (2021).

    Google Scholar 

  19. Lim, K. R. G. et al. Fundamentals of MXene synthesis. Nat. Syn. 1, 601–614 (2022).

    CAS  Google Scholar 

  20. Sikdar, A. et al. Hierarchically porous 3D freestanding holey-MXene framework via mild oxidation of self-assembled MXene hydrogel for ultrafast pseudocapacitive energy storage. ACS Nano 18, 3707–3719 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lan, L., Jiang, C., Yao, Y., Ping, J. & Ying, Y. A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy 84, 105954 (2021).

    CAS  Google Scholar 

  22. Xi, X. et al. Preparation of Au/Pt/Ti3C2Cl2 nanoflakes with self-reducing method for colorimetric detection of glutathione and intracellular sensing of hydrogen peroxide. Carbon 197, 476–484 (2022).

    CAS  Google Scholar 

  23. Zhu, J. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 144, 15529–15538 (2022).

    CAS  PubMed  Google Scholar 

  24. Park, S. et al. Reducing the high hydrogen binding strength of vanadium carbide MXene with atomic Pt confinement for high activity toward HER. Appl. Catal. B 304, 120989 (2022).

    CAS  Google Scholar 

  25. Zhang, J. et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018).

    CAS  Google Scholar 

  26. Li, Z., Huang, W., Liu, J., Lv, K. & Li, Q. Embedding CdS@Au into ultrathin Ti3–xC2Ty to build dual schottky barriers for photocatalytic H2 production. ACS Catal. 11, 8510–8520 (2021).

    CAS  Google Scholar 

  27. Zhao, D. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141, 4086–4093 (2019).

    CAS  PubMed  Google Scholar 

  28. Peng, W. et al. Spontaneous atomic ruthenium doping in Mo2CTx MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 10, e2001364 (2020).

    Google Scholar 

  29. Satheeshkumar, E. et al. One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci. Rep. 6, 32049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pandey, R. P. et al. Ultrahigh-flux and fouling-resistant membrane based on layered silver/MXene(Ti3C2Tx) nanosheets. J. Mater. Chem. A 6, 3522–3533 (2018).

    CAS  Google Scholar 

  31. Zhou, S. et al. Vacancy-rich MXene-immobilized Ni single atoms as a high-performance electrocatalyst for the hydrazine oxidation reaction. Adv. Mater. 34, e2204388 (2022).

    PubMed  Google Scholar 

  32. Xin, W. et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Adv. 9, 29636–29644 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    CAS  PubMed  Google Scholar 

  34. Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    CAS  PubMed  Google Scholar 

  35. Liu, Y.-T. et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, 1707334 (2018).

    Google Scholar 

  36. Zhang, Q. et al. Synergistic photocatalytic-photothermal contribution enhanced by recovered Ag+ ions on MXene membrane for organic pollutant removal. Appl. Catal. B 320, 122009 (2023).

    CAS  Google Scholar 

  37. Wang, Y. et al. Titanium carbide MXenes mediated in situ reduction allows label-free and visualized nanoplasmonic sensing of silver ions. Anal. Chem. 92, 4623–4629 (2020).

    CAS  PubMed  Google Scholar 

  38. Natu, V. et al. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6, 616–630 (2020).

    CAS  Google Scholar 

  39. Song, X. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 13, 1659–1667 (2020).

    CAS  Google Scholar 

  40. Shekhirev, M. et al. Ultralarge flakes of Ti3C2Tx MXene via soft delamination. ACS Nano 16, 13695–13703 (2022).

    CAS  PubMed  Google Scholar 

  41. Bao, H. et al. Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nat. Commun. 12, 238 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Finzel, J. et al. Limits of detection for EXAFS characterization of heterogeneous single-atom catalysts. ACS Catal. 13, 6462–6473 (2023).

    CAS  Google Scholar 

  43. Zhang, Q. et al. Synthesis of large-area MXenes with high yields through power-focused delamination utilizing vortex kinetic energy. Adv. Sci. 9, e2202748 (2022).

    Google Scholar 

  44. Soomro, R. A., Zhang, P., Fan, B., Wei, Y. & Xu, B. Progression in the oxidation stability of MXenes. Nanomicro Lett 15, 108 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao, F. et al. Recent advances in oxidation stable chemistry of 2D MXenes. Adv. Mater. 34, 2107554 (2022).

    CAS  Google Scholar 

  46. Jiang, B. et al. Surface lattice engineering for fine-tuned spatial configuration of nanocrystals. Nat. Commun. 12, 5661 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Natu, V., Sokol, M., Verger, L. & Barsoum, M. W. Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions. J. Phys. Chem. C 122, 27745–27753 (2018).

    CAS  Google Scholar 

  48. Natu, V. et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem. Int. Ed. 58, 12655–12660 (2019).

    CAS  Google Scholar 

  49. Jung, Y. et al. Nitrogen-doped titanium carbide (Ti3C2Tx) MXene nanosheet stack for long-term stability and efficacy in Au and Ag recovery. Small 19, 2305247 (2023).

    CAS  Google Scholar 

  50. Lon, A., Porter, J., Choi, H. C., Ribbe, A. E. & Buriak, J. M. Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Lett. 2, 1067–1071 (2002).

    Google Scholar 

  51. Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).

    CAS  PubMed  Google Scholar 

  52. Li, T. et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57, 6115–6119 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

Q.Z. acknowledges support from Institute of Inorganic Membrane Science and Engineering (Shandong University of Technology) and Natural Science Foundation in Shandong Province (ZR2023QB007 and ZR2022QB147) and the Youth Innovation Team of Colleges and Universities in Shandong Province (2023KJ147). H.L. acknowledges support from the National Natural Science Foundation of China (52371140, 21972093 and 21974027), Shanghai Frontiers Science Centre of Biomimetic Catalysis and the Shanghai Engineering Research Centre of Green Energy Chemical Engineering. J.-a.W. acknowledges support from the Welch Foundation (F-1841) Texas Advanced Computing Centre and the Perlmutter at the National Energy Scientific Research Center. C. Zhang acknowledges support from the Program for Eastern Young Scholars in Shanghai and Shanghai Class IV Peak Disciplinary Development Program.

Author information

Authors and Affiliations

Authors

Contributions

H.L. conceived and supervised the research. Q.Z., Q.Y., C. Zhang and H.L. wrote and revised the paper. Q.Z., Q.Y., Y.F. and C. Zhang designed the experiments. Q.Z., Q.L. and S.X. performed most of the experiments and data analysis. Q.Z., Q.Y., C. Zhang and H.L. discussed and proposed the mechanism. J.-a.W. and Q.L. performed the theoretical calculations. Q.Z., J.-a.W., Q.Y., Q.L., R.F., C.L., Y.F., C. Zhao, W.C., P.J., J.S., C. Zhang, S.X., G.H. and H.L. participated in experiments and discusions. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Hui Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Khaled A. Mahmoud and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary experimental details, Discussion, Figs. 1–81, Tables 1–12 and References.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, Ja., Yu, Q. et al. Metal/MXene composites via in situ reduction. Nat. Synth 4, 252–261 (2025). https://doi.org/10.1038/s44160-024-00660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00660-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing