Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 428 results
Advanced filters: Author: Daniel Richardson Clear advanced filters
  • How the brain supports speaking and listening during conversation of its natural form remains poorly understood. Here, by combining intracranial EEG recordings with Natural Language Processing, the authors show broadly distributed frontotemporal neural signals that encode context-dependent linguistic information during both speaking and listening..

    • Jing Cai
    • Alex E. Hadjinicolaou
    • Sydney S. Cash
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • Squeezed light field microscopy (SLIM) combines ideas from tomography and compressed sensing with light field microscopy to enable volumetric imaging at kilohertz rates, as demonstrated in blood flow imaging in zebrafish and voltage imaging in leeches and mice.

    • Zhaoqiang Wang
    • Ruixuan Zhao
    • Liang Gao
    Research
    Nature Methods
    Volume: 22, P: 2194-2204
  • Demystifying the spawning strategies of fish can help us understand their evolutionary drivers and better inform fisheries management. This study reveals the spawning strategies of pelagic fish, showing that the benefits of co-located spawning across time and space outweigh the potential drawbacks.

    • Kristine Camille V. Buenafe
    • Sandra Neubert
    • Anthony J. Richardson
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • A study reports whole-genome sequences for 490,640 participants from the UK Biobank and combines these data with phenotypic data to provide new insights into the relationship between human variation and sequence variation.

    • Keren Carss
    • Bjarni V. Halldorsson
    • Ole Schulz-Trieglaff
    ResearchOpen Access
    Nature
    Volume: 645, P: 692-701
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Single-nucleus and single-cell RNA sequencing plus spatial profiling with four methods of core biopsies from 60 patients with metastatic breast cancer reveal patient-specific gene expression programs of breast cancer metastases that are maintained across time, site of metastasis and spatial profiling method, with spatial phenotypes correlating with microenvironmental features.

    • Johanna Klughammer
    • Daniel L. Abravanel
    • Nikhil Wagle
    ResearchOpen Access
    Nature Medicine
    Volume: 30, P: 3236-3249
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The conversion of solar energy into electricity usually occurs either electrically or through thermal conversion. A new mechanism, photon-enhanced thermionic emission, which combines electric as well as thermal conversion mechanisms, is now shown to lead to enhanced conversion efficiencies that potentially could even exceed the theoretical limits of conventional photovoltaic cells.

    • Jared W. Schwede
    • Igor Bargatin
    • Nicholas A. Melosh
    Research
    Nature Materials
    Volume: 9, P: 762-767
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Neuronal migration is vital for neuronal circuit morphogenesis and is thought to rely on microtubule-actomyosin crosstalk. Here, the authors use super-resolution imaging and the drebrin microtubule-actin crosslinking protein to show that microtubule-actomyosin coupling controls the direction of centrosome and somal motility.

    • Niraj Trivedi
    • Daniel R. Stabley
    • David J. Solecki
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-17
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • PetaKit5D offers versatile processing workflows for light sheet microscopy data including performant image input/output, geometric transformations, deconvolution and stitching. The software is efficient and scalable to petabyte-size datasets.

    • Xiongtao Ruan
    • Matthew Mueller
    • Srigokul Upadhyayula
    ResearchOpen Access
    Nature Methods
    Volume: 21, P: 2342-2352
  • The LHCb experiment at CERN has observed significant asymmetries between the decay rates of the beauty baryon and its CP-conjugated antibaryon, thus demonstrating CP violation in baryon decays.

    • R. Aaij
    • A. S. W. Abdelmotteleb
    • G. Zunica
    ResearchOpen Access
    Nature
    Volume: 643, P: 1223-1228
  • Meta-analyses in up to 1.3 million individuals identify 87 rare-variant associations with blood pressure traits. On average, rare variants exhibit effects ~8 times larger than the mean effects of common variants and implicate candidate causal genes at associated regions.

    • Praveen Surendran
    • Elena V. Feofanova
    • Joanna M. M. Howson
    Research
    Nature Genetics
    Volume: 52, P: 1314-1332
  • A two-photon computed tomography approach, called scanned line angular projection microscopy, enables high-speed imaging at over 1 kHz frame rates, as demonstrated for glutamate imaging in the in vivo mouse brain.

    • Abbas Kazemipour
    • Ondrej Novak
    • Kaspar Podgorski
    Research
    Nature Methods
    Volume: 16, P: 778-786
  • Wood density is an important plant trait. Data from 1.1 million forest inventory plots and 10,703 tree species show a latitudinal gradient in wood density, with temperature and soil moisture explaining variation at the global scale and disturbance also having a role at the local level.

    • Lidong Mo
    • Thomas W. Crowther
    • Constantin M. Zohner
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 8, P: 2195-2212
  • The synthesis, structure and reactivity of room-temperature-stable [Cp(C6F5)5]+[Sb3F16] is presented. Coordination of the cyclopentadienyl cation by [Sb3F16] or C6F6 stabilizes the antiaromatic singlet state in the solid state. Calculated hydride and fluoride ion affinities of the [Cp(C6F5)5]+ cation are higher than those of the tritylium cation [C(C6F5)3]+.

    • Yannick Schulte
    • Christoph Wölper
    • Stephan Schulz
    Research
    Nature Chemistry
    Volume: 16, P: 651-657