Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 287 results
Advanced filters: Author: Derek C. Chen Clear advanced filters
  • Some cancer cells exhibit high loads of reactive iron in lysosomes, and this feature is exploited by using fentomycin-1, a newly developed small molecule, to induce ferroptosis.

    • Tatiana Cañeque
    • Leeroy Baron
    • Raphaël Rodriguez
    ResearchOpen Access
    Nature
    Volume: 642, P: 492-500
  • Lithium has an essential role in the brain and is deficient early in Alzheimer’s disease, which can be recapitulated in mice and treated with a novel lithium salt that restores the physiological level.

    • Liviu Aron
    • Zhen Kai Ngian
    • Bruce A. Yankner
    ResearchOpen Access
    Nature
    Volume: 645, P: 712-721
  • GIANT, a genetically informed brain atlas, integrates genetic heritability with neuroanatomy. It shows strong neuroanatomical validity and surpasses traditional atlases in discovery power for brain imaging genomics.

    • Jingxuan Bao
    • Junhao Wen
    • Li Shen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Analysing camera-trap data of 163 mammal species before and after the onset of COVID-19 lockdowns, the authors show that responses to human activity are dependent on the degree to which the landscape is modified by humans, with carnivores being especially sensitive.

    • A. Cole Burton
    • Christopher Beirne
    • Roland Kays
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 8, P: 924-935
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A genome-wide association meta-analysis study of blood lipid levels in roughly 1.6 million individuals demonstrates the gain of power attained when diverse ancestries are included to improve fine-mapping and polygenic score generation, with gains in locus discovery related to sample size.

    • Sarah E. Graham
    • Shoa L. Clarke
    • Cristen J. Willer
    Research
    Nature
    Volume: 600, P: 675-679
  • In patients with advanced cancer, the development of brain metastasis (BM) often signals a worsening prognosis with limited therapeutic options. Here, the authors assemble a large, open-source neuroimaging dataset of BM and perform spatial and morphological analysis which they use to develop a framework for function-sparing brain radiotherapy design.

    • Jorge Barrios
    • Evan Porter
    • Olivier Morin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Quasi-one-dimensional substructures have distinctive properties, but the lattice dynamics are poorly understood. Here, Chen et al.use inelastic neutron scattering and density functional theory to discover that numerous low-energy optical vibrational modes including a twisting polarization are present in higher manganese silicides.

    • Xi Chen
    • Annie Weathers
    • Li Shi
    Research
    Nature Communications
    Volume: 6, P: 1-9
  • A metabolic system of engineered biocatalysts using the noncanonical cofactor nicotinamide mononucleotide is established for biomanufacturing in cell-free systems and in Escherichia coli without interference from nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate.

    • Derek Aspacio
    • Yulai Zhang
    • Han Li
    Research
    Nature Chemical Biology
    Volume: 20, P: 1535-1546
  • T cell responses can be generated to either pathogen infection or from priming with a vaccine. Here the authors compare T cell generation, phenotype and single cell transcriptome of participants vaccinated with a mpox vaccine or infected with the virus showing that the virus induced T cells showed more effective function and phenotype.

    • Ji-Li Chen
    • Beibei Wang
    • Tao Dong
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • The effects of chromosomal translocations involving the mixed-lineage leukemia (MLL) locus on gene expression regulation remain to be explored. Here, the authors find that MLL oncoproteins support lineage-switching events through dynamic chromatin binding.

    • Derek H. Janssens
    • Melodie Duran
    • Steven Henikoff
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Retrosynthetic pathway design using promiscuous enzymes can provide a solution to the biosynthetic production of natural products. Here, the authors design a pathway for the production of cis-α-irone with a promiscuous methyltransferase using structure-guided enzyme engineering strategies.

    • Xixian Chen
    • Rehka T
    • Isabelle André
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-10
  • A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.

    • Vassily Trubetskoy
    • Antonio F. Pardiñas
    • Jim van Os
    Research
    Nature
    Volume: 604, P: 502-508
  • Many mechanical applications need materials that are not just strong and hard, but tough and resistant to wear. The ceramic β-SiAlON is a good example — it is inherently hard and strong, and can be grown with a whiskery microstructure that makes it tough. Now the even harder α-SiAlON has been grown with the same sort of tough microstructure, promising higher-performance cutting tools and engine components, for example.

    • Derek Thompson
    News & Views
    Nature
    Volume: 389, P: 675-677
  • The Cambrian explosion of biological diversity has been associated with widespread ocean oxygenation, yet early Cambrian ocean redox conditions remain controversial. Here, the authors present a suite of molybdenum isotope data and show that the ocean was oxygenated to modern-like levels by 521 Ma.

    • Xi Chen
    • Hong-Fei Ling
    • Corey Archer
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-7
  • Multi-ancestry genome-wide association meta-analysis of major depression identifies new risk loci, assesses the transferability of risk loci across ancestry groups, and improves fine-mapping resolution and prioritization of candidate effector genes.

    • Xiangrui Meng
    • Georgina Navoly
    • Karoline Kuchenbaecker
    ResearchOpen Access
    Nature Genetics
    Volume: 56, P: 222-233