Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 169 results
Advanced filters: Author: Helena Lin Clear advanced filters
  • Spatial transcriptomic studies and lineage tracing reveal that, after brain injury, transient profibrotic fibroblasts develop from existing brain fibroblasts, infiltrate lesions, regulate the local immune response and lead to beneficial scar tissue formation.

    • Nathan A. Ewing-Crystal
    • Nicholas M. Mroz
    • Ari B. Molofsky
    ResearchOpen Access
    Nature
    P: 1-11
  • A preclinical covalent compound, CMX410, contains a aryl fluorosulfate warhead that targets the acyltransferase domain of Mtb Pks13, an essential enzyme in cell-wall biosynthesis, making it a promising candidate for tuberculosis treatment regimens.

    • Inna V. Krieger
    • Paridhi Sukheja
    • Case W. McNamara
    Research
    Nature
    Volume: 645, P: 755-763
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.

    • Vassily Trubetskoy
    • Antonio F. Pardiñas
    • Jim van Os
    Research
    Nature
    Volume: 604, P: 502-508
  • A genome-wide association meta-analysis study of blood lipid levels in roughly 1.6 million individuals demonstrates the gain of power attained when diverse ancestries are included to improve fine-mapping and polygenic score generation, with gains in locus discovery related to sample size.

    • Sarah E. Graham
    • Shoa L. Clarke
    • Cristen J. Willer
    Research
    Nature
    Volume: 600, P: 675-679
  • A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants.

    • Loïc Yengo
    • Sailaja Vedantam
    • Joel N. Hirschhorn
    ResearchOpen Access
    Nature
    Volume: 610, P: 704-712
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Dick and colleagues identify human LT-HSC subsets with distinct quiescent states. They link these differences to INKA1-mediated downregulation of the transmembrane protein CD112 and its interaction with the protein deacetylase SIRT1. INKA1 is inversely correlated with the histone H4K16Ac mark, which then distinguishes ‘latent’ CD112lo LT-HSCs from CD112hi LT-HSCs that are more readily activated in response to hematopoietic stress.

    • Kerstin B. Kaufmann
    • Andy G. X. Zeng
    • John E. Dick
    Research
    Nature Immunology
    Volume: 22, P: 723-734
  • Early detection of type 1 diabetes can facilitate early intervention. Here, the authors present a pQTL map in newborns and integrate it with genetic data to identifiy proteins that may play a causal role in the development of type 1 diabetes.

    • Mauro Tutino
    • Nancy Yiu-Lin Yu
    • Eleftheria Zeggini
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Sort-assisted single-cell chromatin immunocleavage (sortChIC) combines single-cell histone modification profiling with fluorescence-activated cell sorting (FACS), enabling the study of rare cell populations. H3K4me1/H3K4me3, H3K9me3 and H3K27me3 profiling of blood suggest a model of lineage-shared repressive and cell type-specific active chromatin.

    • Peter Zeller
    • Jake Yeung
    • Alexander van Oudenaarden
    ResearchOpen Access
    Nature Genetics
    Volume: 55, P: 333-345
  • Respiratory infections occur throughout life but how this shapes the lung immune system through time is unclear. Wack and colleagues show that a previous influenza infection recruits monocytes to the lung, which then assume an alveolar macrophage-like phenotype and mediate long-term antibacterial protection.

    • Helena Aegerter
    • Justina Kulikauskaite
    • Andreas Wack
    Research
    Nature Immunology
    Volume: 21, P: 145-157
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Stromal cells are key players in immune cell homeostasis. Here, the authors decipher subset-specific human stromal responses in inflammatory bowel disease and suggest that intestinal PDGFRA+CD142−/low fibroblasts guide monocyte transition to macrophages in human gut through GM-CSF.

    • Egle Kvedaraite
    • Magda Lourda
    • Mattias Svensson
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-16
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Inbreeding depression has been observed in many different species, but in humans a systematic analysis has been difficult so far. Here, analysing more than 1.3 million individuals, the authors show that a genomic inbreeding coefficient (FROH) is associated with disadvantageous outcomes in 32 out of 100 traits tested.

    • David W Clark
    • Yukinori Okada
    • James F Wilson
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Large genome-wide meta-analysis of clinically diagnosed late-onset Alzheimer’s disease (LOAD) from 94,437 individuals identifies new LOAD risk loci and implicates Aβ formation, tau protein binding, immune response and lipid metabolism.

    • Brian W. Kunkle
    • Benjamin Grenier-Boley
    • Margaret A. Pericak-Vance
    Research
    Nature Genetics
    Volume: 51, P: 414-430
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A multi-ancestry genome-wide association study for age at menarche followed by fine mapping and downstream analysis implicates 665 pubertal timing genes, such as the G-protein-coupled receptor 83 (GPR83) and other genes expressed in the ovaries involved in the DNA damage response.

    • Katherine A. Kentistou
    • Lena R. Kaisinger
    • Ken K. Ong
    ResearchOpen Access
    Nature Genetics
    Volume: 56, P: 1397-1411
  • Reduced glomerular filtration rate (eGFR) is a hallmark of chronic kidney disease. Here, Pattaro et al. conduct a meta-analysis to discover several new loci associated with variation in eGFR and find that genes associated with eGFR loci often encode proteins potentially related to kidney development.

    • Cristian Pattaro
    • Alexander Teumer
    • Caroline S. Fox
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-19
  • Insufficient AHR activation has been suggested in SLE, and augmenting AHR activation therapeutically may prevent CXCL13+ TPH/TFH differentiation and the subsequent recruitment of B cells and formation of lymphoid aggregates in inflamed tissues.

    • Calvin Law
    • Vanessa Sue Wacleche
    • Deepak A. Rao
    Research
    Nature
    Volume: 631, P: 857-866
  • Genomic analyses of large population-based cohorts uncover the genetic determinants of perivascular space burden, an MRI marker of cerebral small vessel disease, across the lifespan, and reveal potential pathways implicated in the etiology of stroke and dementia.

    • Marie-Gabrielle Duperron
    • Maria J. Knol
    • Stéphanie Debette
    ResearchOpen Access
    Nature Medicine
    Volume: 29, P: 950-962