The stochastic features of memristors make them suitable for computation and probabilistic sampling; however, implementing these properties in hardware is extremely challenging. Lin et al. introduce an approach that leverages the cycle-to-cycle read variability of memristors as a physical random variable for in situ, real-time random number generation, and demonstrate it on a risk-sensitive reinforcement learning task.
- Yudeng Lin
- Qingtian Zhang
- Huaqiang Wu