Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 176 results
Advanced filters: Author: Jeremy M. Stark Clear advanced filters
  • Preservation strategy.

    • Jeremy Szal
    Comments & Opinion
    Nature
    Volume: 558, P: 630
  • Dual-comb spectroscopy has become a valuable tool for broadband high-resolution measurements. Here Bergevin et al. apply this technique to a laser-induced plasma detecting different species in a solid sample with a spectral resolution sufficient to resolve hyperfine splitting of the Rb D2 line.

    • Jenna Bergevin
    • Tsung-Han Wu
    • R. Jason Jones
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-6
  • Proliferation of adult tissue stem cells is tightly regulated to balance maintenance of the tissue against stem cell exhaustion or cancerous expansion. Here they show that zebrafish lateral line progenitors are differentially regulated by two cyclinD genes, which control developmental and adult progenitor proliferation as well as hair cell polarization.

    • Mark E. Lush
    • Ya-Yin Tsai
    • Tatjana Piotrowski
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Multimode interference devices could allow the implementation of multiport circuits for quantum technologies. Here, quantum interference is demonstrated in 2×2 and 4×4 multimode interference devices, and a technique is reported to characterize such devices.

    • Alberto Peruzzo
    • Anthony Laing
    • Jeremy L. O'Brien
    ResearchOpen Access
    Nature Communications
    Volume: 2, P: 1-6
  • Two-dimensional arrays of trapped ion qubits are attractive platforms for quantum information processing, but rapid reloading remains a challenge. Here the authors use a continuous flux of pre-cooled neutral atoms to achieve fast loading of single ions without affecting the coherence of adjacent qubits.

    • Colin D. Bruzewicz
    • Robert McConnell
    • Jeremy M. Sage
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-6
  • The hyperfine states of ultracold polar molecules are a strong candidate for storing quantum information. Identifying and eliminating all detectable causes of decoherence has extended the qubit coherence time beyond 5.6 s in RbCs molecules.

    • Philip D. Gregory
    • Jacob A. Blackmore
    • Simon L. Cornish
    Research
    Nature Physics
    Volume: 17, P: 1149-1153
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Tracking immobilized molecular complexes under in situ conditions is vital for the development of next-generation catalysts, although the poor surface sensitivity of many techniques makes this challenging. Now, the role of the anchoring group in a nickel bis(terpyridine) complex has been elucidated by in situ gap-plasmon-assisted SERS coupled with DFT calculations.

    • Demelza Wright
    • Qianqi Lin
    • Jeremy J. Baumberg
    Research
    Nature Catalysis
    Volume: 4, P: 157-163
  • Immune gene expression analysis can help differentiate between inflammatory skin diseases. Here the authors compare expression profiles between different human inflammatory skin diseases and identify gene modules such as cytokines or inflammatory mediators and a molecular map to assist in diagnosis and treatment.

    • Teofila Seremet
    • Jeremy Di Domizio
    • Michel Gilliet
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-12
  • Hydroxide exchange membrane fuel cells are promising devices for energy conversion. Now, a porous nitrogen-doped carbon-supported PtRu catalyst for the hydrogen oxidation reaction is presented, consisting of Pt single atoms and PtRu nanoparticles that work synergistically. The catalyst enables a fuel cell that exceeds the US Department of Energy 2022 performance target.

    • Weiyan Ni
    • Josephine Lederballe Meibom
    • Xile Hu
    Research
    Nature Catalysis
    Volume: 6, P: 773-783
  • The haplotype-resolved genome in Amborella trichopoda addresses outstanding questions on the structure and gene content of the recently evolved ZW sex chromosomes.

    • Sarah B. Carey
    • Laramie Aközbek
    • Alex Harkess
    ResearchOpen Access
    Nature Plants
    Volume: 10, P: 1944-1954
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Synthetic Notch (SynNotch) receptors can be used to endow cells with custom sense-and-respond capabilities. Here, the authors introduce a fluorescein-binding SynNotch as a versatile tool for controlling gene expression responses to diverse stimuli via ligands based on fluorescein-conjugates.

    • Jeremy C. Tran
    • Christopher J. Kuffner
    • John T. Ngo
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Researchers report rewritable nanoscale photodetectors that exploit 2–3 nm nanowire junctions. Large electromagnetic fields in the gap region aid the detector response, which is electric-field-tunable and spans the visible to near-infrared regime.

    • Patrick Irvin
    • Yanjun Ma
    • Jeremy Levy
    Research
    Nature Photonics
    Volume: 4, P: 849-852
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Stratified medicine promises to tailor treatment for individual patients, however it remains a major challenge to leverage genetic risk data to aid patient stratification. Here the authors introduce an approach to stratify individuals based on the aggregated impact of their genetic risk factor profiles on tissue-specific gene expression levels, and highlight its ability to identify biologically meaningful and clinically actionable patient subgroups, supporting the notion of different patient ‘biotypes’ characterized by partially distinct disease mechanisms.

    • Lucia Trastulla
    • Georgii Dolgalev
    • Michael J. Ziller
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-28
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Quantum reservoir computing might in principle give advantages in solving signal classification tasks, but current implementations usually incur in the digitalization bottleneck. Here, the authors demonstrate an implementation dealing directly with the analogue MW signals.

    • Alen Senanian
    • Sridhar Prabhu
    • Peter L. McMahon
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-9
  • Ultracold polar molecules are an excellent platform for quantum science but experiments so far see fast trap losses that are poorly understood. Here the authors investigate collisional losses of nonreactive RbCs, and show they are consistent with the sticky collision hypothesis, but are slower than the universal rate.

    • Philip D. Gregory
    • Matthew D. Frye
    • Simon L. Cornish
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-7
  • Abiraterone acetate (AA) is indicated for the treatment of patients with metastatic castrate-resistant prostate cancer. Here, the authors show that, in prostate cancer patients, orally administered AA remodels the gut microbiome and promotes the enrichment of the commensal bacterium Akkermansia muciniphila at the expense of androgen-utilizing Corynebacterium species.

    • Brendan A. Daisley
    • Ryan M. Chanyi
    • Jeremy P. Burton
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-11
  • Here, the authors report the observation of an interlayer plasmon polaron in heterostructures composed of graphene and monolayer WS2. This is manifested in the ARPES spectra as a strong quasiparticle peak accompanied by several carrier density-dependent shake-off replicas around the WS2 conduction band minimum.

    • Søren Ulstrup
    • Yann in ’t Veld
    • Jyoti Katoch
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-9
  • The potential power of the saturated carbocycle bicyclo[3.1.1]heptane as a beneficial motif for improving the pharmacokinetic and physicochemical properties of drug candidates is demonstrated.

    • Nils Frank
    • Jeremy Nugent
    • Edward A. Anderson
    Research
    Nature
    Volume: 611, P: 721-726
  • New analytical tools are needed to identify chemical degradation and failure mechanisms in Li-ion batteries. Here, the authors report an operando Raman spectroscopy method, based on hollow-core optical fibres, that enables monitoring the chemistry of liquid electrolytes during battery cycling.

    • Ermanno Miele
    • Wesley M. Dose
    • Tijmen G. Euser
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-10