Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 2300 results
Advanced filters: Author: Jonathan Li Clear advanced filters
  • Understanding collective behaviour is an important aspect of managing the pandemic response. Here the authors show in a large global study that participants that reported identifying more strongly with their nation reported greater engagement in public health behaviours and support for public health policies in the context of the pandemic.

    • Jay J. Van Bavel
    • Aleksandra Cichocka
    • Paulo S. Boggio
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-14
  • New field measurements and modeling show meltwater refreezing in Greenland’s bare ice may reduce runoff to surrounding oceans, highlighting a process climate models can incorporate for improved predictions of future sea-level rise.

    • Matthew G. Cooper
    • Laurence C. Smith
    • Dirk van As
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • This study reports widespread loss of mountain vegetation worldwide from 2000 to 2020, with ∼89% attributable to human expansion, primarily agriculture. Over half of this loss occurred within protected areas and other biodiversity-rich areas, threatening conservation efforts.

    • Chao Yang
    • Haiying Xu
    • Jonathan M. Chase
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • UCHL5 is a deubiquitinating enzyme that cleaves Lys-48-linked polyubiquitin chains. Here, the authors discover through in-vivo CRISPR-Cas9 screens that Uchl5 is involved in immune evasion and modulation of extracellular matrix deposition in head and neck squamous cell carcinoma.

    • Cong Fu
    • Robert Saddawi-Konefka
    • Robert T. Manguso
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Whether higher-order visual areas exhibit a fine-grained functional organization remains poorly understood. Here, the authors use high-resolution fMRI to reveal that category-selective regions in macaques are organized into mesoscale functional units which form distinct long-range mesoscale functional networks.

    • Qi Zhu
    • Xiaolian Li
    • Wim Vanduffel
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Li et al. discovered that the cytotoxic synthetic small molecule BRD1732 is directly ubiquitinated in cells. Ubiquitination of BRD1732 is E3 ligase dependent and leads to inhibition of proteasomal degradation.

    • Weicheng Li
    • Enrique M. Garcia-Rivera
    • Jonathan M. L. Ostrem
    ResearchOpen Access
    Nature Chemical Biology
    P: 1-9
  • Federated learning (FL) algorithms have emerged as a promising solution to train models for healthcare imaging across institutions while preserving privacy. Here, the authors describe the Federated Tumor Segmentation (FeTS) challenge for the decentralised benchmarking of FL algorithms and evaluation of Healthcare AI algorithm generalizability in real-world cancer imaging datasets.

    • Maximilian Zenk
    • Ujjwal Baid
    • Spyridon Bakas
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • RNA base editing represents an exciting modality in precision genetic medicine. Here the authors develop short, metabolically stable RNA oligonucleotides (RESTORE 2.0) that enable precise and efficient RNA base editing, demonstrating successful in-vivo correction of a disease-causing human mutation.

    • Laura S. Pfeiffer
    • Tobias Merkle
    • Thorsten Stafforst
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Solid-state batteries remain promising but essential insights into electrode-electrolyte interface are required. Here, the authors report in situ infrared nanospectroscopy of the lithium-polymer-electrolyte interface to reveal its intrinsic molecular, structural, and chemical heterogeneities.

    • Xin He
    • Jonathan M. Larson
    • Robert Kostecki
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-10
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • This study identifies TriDTCs as a family of terpene cyclases responsible for harzianol I and wickerol A biosynthesis in Trichoderma fungi and are found to regulate Trichoderma’s chlamydospore and Aspergillus oryzae’s sclerotia formation through producing harzianol I.

    • Min-Jie Yang
    • De-Sen Li
    • Sheng-Hong Li
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • 134Ce and 134La have great potential as companion diagnostic isotopes for radiotherapeutics labelled with α-emitting 225Ac and 227Th. Now, by controlling the CeIII/CeIV redox couple, the large-scale production, purification and characterization of 134Ce- and 134La-based radiolabels has been achieved and their use for in vivo positron emission tomography is demonstrated.

    • Tyler A. Bailey
    • Veronika Mocko
    • Rebecca J. Abergel
    Research
    Nature Chemistry
    Volume: 13, P: 284-289
  • PROTAC development has surged in popularity, however our ability to characterize PROTAC specificity in living cells has lagged behind. Here, the authors develop ProtacID, a flexible proximity-dependent biotinylation (BioID)-based approach to identify PROTAC-protein interactions in living cells.

    • Suman Shrestha
    • Matthew E. R. Maitland
    • Brian Raught
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • A UCP1-independent mechanism of thermogenesis involving ATP-consuming metabolism of monomethyl branched-chain fatty acids in peroxisomes is described and a previously unrecognized role for peroxisomes in adipose tissue thermogenesis is identified.

    • Xuejing Liu
    • Anyuan He
    • Irfan J. Lodhi
    ResearchOpen Access
    Nature
    P: 1-9
  • The authors report a meta-analysis of methylome-wide association studies, identifying 15 significant CpG sites linked to major depression, revealing associations with inflammatory markers and suggesting potential causal relationships through Mendelian randomization analysis.

    • Xueyi Shen
    • Miruna Barbu
    • Andrew M. McIntosh
    ResearchOpen Access
    Nature Mental Health
    Volume: 3, P: 1152-1167
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A retrospective, observational study shows that completion of a diabetes prevention program in England (the NHS Diabetes Prevention Programme) was associated with decreased incidence of type 2 diabetes and long-term conditions such as dementia and chronic obstructive pulmonary disease at 24 months.

    • Emma Barron
    • Paul Chappell
    • Jonathan Valabhji
    ResearchOpen Access
    Nature Medicine
    P: 1-7
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A soft, finger-worn haptic interface consisting of four serpentine-structured shape memory alloy actuators can implement 11 distinct patterns of tactile sensations composed of shear, normal and circular rubbing forces.

    • Beomchan Kang
    • Nathan Zavanelli
    • Carmel Majidi
    Research
    Nature Electronics
    Volume: 8, P: 818-830
  • Understanding phase transitions in electrodes under realistic conditions is important for future battery design. Here, the authors use synchrotron micro-beam diffraction to reveal the phase transition mechanism within individual particles of LiFePO4, revealing a cycling rate transformation mechanism.

    • Xiaoyu Zhang
    • Martijn van Hulzen
    • Marnix Wagemaker
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-7
  • An aromatic metallo-annulene, comprising a 15-carbon macrocycle enclosing an osmium complex, with the metal residing within the plane of the macrocycle is reported.

    • Binbin Xu
    • Dafa Chen
    • Haiping Xia
    Research
    Nature
    Volume: 641, P: 106-111
  • Hydrogel materials have emerged as versatile platforms for biomedical applications. Here this group reports an mRNA lipid nanoparticle-incorporated microgel matrix for immune cell recruitment/antigen expression and presentation/cellular interaction thereby eliciting antitumor efficacy with a single dose.

    • Yining Zhu
    • Zhi-Cheng Yao
    • Hai-Quan Mao
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16