Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 181 results
Advanced filters: Author: Julian C. Knight Clear advanced filters
  • Natural Killer cells are key mediators of anti-tumour immunosurveillance and anti-viral immunity. Here, the authors map regulatory genetic variation in primary Natural Killer cells, providing new insights into their role in human health and disease.

    • James J. Gilchrist
    • Seiko Makino
    • Benjamin P. Fairfax
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-13
  • It is important to know how the recent COVID-19 pandemic shaped the immune memory against the causal SARS-CoV-2 virus. Here authors show that long years following mild disease at primary infection, SARSCoV-2 spike-specific CD4 + T cells with distinct phenotypes and T cell receptor clonotypes, associated with viral suppression persist.

    • Guihai Liu
    • Elie Antoun
    • Tao Dong
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • Here the authors perform a trans expression quantitative trait locus meta-analysis study of over 3,700 people and link a USP18 variant to expression of 50 inflammation genes and lupus risk, highlighting how genetic regulation of immune responses drives autoimmune disease and informs new therapies.

    • Krista Freimann
    • Anneke Brümmer
    • Kaur Alasoo
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • In a combined analysis of two large patient cohorts, three peripheral consensus transcriptomic subtypes of sepsis are identified, which can be linked to an 18-gene classifier associated with different odds of mortality and may offer a way to tailor care for patients with sepsis.

    • Brendon P. Scicluna
    • Kiki Cano-Gamez
    • Tom van der Poll
    ResearchOpen Access
    Nature Medicine
    P: 1-12
  • Our understanding of variation in monocyte context-specific splicing and transcript usage is limited. Here, the authors find genetic variants that affect gene splicing in monocytes in specific contexts, including several diseases, and in response to stimulants.

    • Isar Nassiri
    • James J. Gilchrist
    • Benjamin P. Fairfax
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • T cell responses can be generated to either pathogen infection or from priming with a vaccine. Here the authors compare T cell generation, phenotype and single cell transcriptome of participants vaccinated with a mpox vaccine or infected with the virus showing that the virus induced T cells showed more effective function and phenotype.

    • Ji-Li Chen
    • Beibei Wang
    • Tao Dong
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Expression quantitative trait loci (eQTLs) are the genetic units of gene expression variation. Julian Knight and colleagues report an analysis of cell type–specific eQTLs from positively purified primary monocytes and B cells. Among the trans-acting eQTLs identified, they report new master regulators of gene expression, as well as autoimmune disease associations to specific HLA alleles.

    • Benjamin P Fairfax
    • Seiko Makino
    • Julian C Knight
    Research
    Nature Genetics
    Volume: 44, P: 502-510
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • A genome-wide association study of critically ill patients with COVID-19 identifies genetic signals that relate to important host antiviral defence mechanisms and mediators of inflammatory organ damage that may be targeted by repurposing drug treatments.

    • Erola Pairo-Castineira
    • Sara Clohisey
    • J. Kenneth Baillie
    Research
    Nature
    Volume: 591, P: 92-98
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In Drosophila, insulators may be involved in the organization of Topological Associated Domains, but the mechanism of action is a still a matter of investigation. Here the authors investigate the role of insulators in the 3D organization of the Drosophila genome by combining bioinformatics analysis and Hi-M, an imaging-based methods developed to detect the 3D positions of multiple genomic loci in single cells.

    • Olivier Messina
    • Flavien Raynal
    • Marcelo Nollmann
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-14
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Stig Bojesen, Georgia Chenevix-Trench, Alison Dunning and colleagues report common variants at the TERT-CLPTM1L locus associated with mean telomere length measured in whole blood. They also identify associations at this locus to breast or ovarian cancer susceptibility and report functional studies in breast and ovarian cancer tissue and cell lines.

    • Stig E Bojesen
    • Karen A Pooley
    • Alison M Dunning
    Research
    Nature Genetics
    Volume: 45, P: 371-384
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A study using scanning tunnelling microscopy reveals a charge-density-wave state that is sensitive to magnetic fields and strongly intertwined with superconductivity in the heavy-fermion triplet superconductor UTe2.

    • Anuva Aishwarya
    • Julian May-Mann
    • Vidya Madhavan
    Research
    Nature
    Volume: 618, P: 928-933
  • A reinforcement-learning algorithm that combines a tree-based search with a learned model achieves superhuman performance in high-performance planning and visually complex domains, without any knowledge of their underlying dynamics.

    • Julian Schrittwieser
    • Ioannis Antonoglou
    • David Silver
    Research
    Nature
    Volume: 588, P: 604-609
  • It’s not always clear whether blood biomarkers are differentially expressed in the time course of viral infections. In this SARS-CoV-2 human challenge study, the authors identify distinct single-gene blood transcriptional biomarkers for early stages of infection or for symptomatic infection.

    • Joshua Rosenheim
    • Rishi K. Gupta
    • Mahdad Noursadeghi
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • Interleukin-7 (IL-7) is a central cytokine in T cell homeostasis. Here the authors show that allelic variation at rs6897932, an autoimmune GWAS risk allele at IL7R, regulates surface and soluble IL-7R in stimulated monocytes, indicating a function of monocytes in IL-7-related autoimmunity.

    • Hussein Al-Mossawi
    • Nicole Yager
    • Benjamin P. Fairfax
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-11
  • Streptococcus pneumoniae is a causative agent of meningitis and bacteremia. In a combined pathogen and host GWAS, Lees et al. find that host genetic variation is associated with both susceptibility and severity of pneumococcal meningitis, and specific bacterial genetic variation associated with susceptibility.

    • John A. Lees
    • Bart Ferwerda
    • Diederik van de Beek
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-14
  • Peng et al. find that immunodominant cytotoxic T lymphocytes (CTLs) specific for NP105–113-B*07:02 are associated with reduced COVID-19 severity. Mechanistically, NP105–113-B*07:02-specific CTLs show potent antiviral functionality and may represent rational T cell vaccine targets.

    • Yanchun Peng
    • Suet Ling Felce
    • Tao Dong
    ResearchOpen Access
    Nature Immunology
    Volume: 23, P: 50-61
  • Multiplexed imaging of 3,660 chromosomal loci in individual mouse embryonic stem cells by DNA seqFISH+ with immunofluorescence of 17 chromatin marks and subnuclear structures reveals invariant organization of loci within individual cells, and heterogeneous and long-lived distinct combinatorial chromatin states in cellular subpopulations.

    • Yodai Takei
    • Jina Yun
    • Long Cai
    Research
    Nature
    Volume: 590, P: 344-350