Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 92 results
Advanced filters: Author: Max Frenkel Clear advanced filters
  • Time- and angle-resolved photoemission spectroscopy is used to observe the primary step of singlet fission with orbital resolution indicating a charge-transfer mediated mechanism with a hybridization of states in the lowest bright singlet exciton.

    • Alexander Neef
    • Samuel Beaulieu
    • Ralph Ernstorfer
    ResearchOpen Access
    Nature
    Volume: 616, P: 275-279
  • Many studies of polariton condensates have been limited to low temperatures. Here the authors demonstrate ambient polariton condensation in lattices using organic traps that profit from the stability of organic excitons and the large Rabi splitting.

    • M. Dusel
    • S. Betzold
    • C. Schneider
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-7
  • The understanding of quantum effects in electronic crystallization is limited. Murase et al. report spatio-temporal dynamics in an organic material, with distinct nucleation and growth signatures, demonstrating larger growth rates than in the classical case due to quantum nature of electrons.

    • Hideaki Murase
    • Shunto Arai
    • Kazushi Kanoda
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-7
  • The frictional properties of a two-dimensional colloidal crystal reveal that excitations known as kinks and antikinks form when the crystal is dragged along a solid surface. This phenomenon, which was predicted previously but never observed, demonstrates the potential of using colloidal crystals to study frictional properties that are otherwise difficult to characterize.

    • Thomas Bohlein
    • Jules Mikhael
    • Clemens Bechinger
    Research
    Nature Materials
    Volume: 11, P: 126-130
  • Singlet fission is desirable for highly efficient solar cells, yet the details of the process remain elusive. Here, Broch et al. show that the changes in bulk intermolecular interactions can have little effect on the singlet fission rate in a mixture of pentacene and weakly interacting spacer molecules.

    • K. Broch
    • J. Dieterle
    • F. Schreiber
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-9
  • A systematic analysis of a series of donor–acceptor organic blends shows that in solar cells based on low-bandgap non-fullerene acceptors an ionization energy offset of about 0.5 eV is required to ensure efficient charge separation.

    • Safakath Karuthedath
    • Julien Gorenflot
    • FrĂ©dĂ©ric Laquai
    Research
    Nature Materials
    Volume: 20, P: 378-384
  • Photosynthesis occurs at the thylakoid membrane, which acts as a scaffold, precisely arranging functional proteins and electron carriers. Sunet al.synthesize hollow photosynthetic nanospheres that function as light-harvesting antennae and structured scaffolds that improve photoredox catalysis.

    • Jianhua Sun
    • Jinshui Zhang
    • Xinchen Wang
    Research
    Nature Communications
    Volume: 3, P: 1-7
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Interstitials can substantially strengthen metals. Here the authors show a massive interstitial solid solution (MISS) approach enabling a model multicomponent alloy to achieve near-theoretical strength together with large deformability.

    • Chang Liu
    • Wenjun Lu
    • Dierk Raabe
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-9
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The phase behavior of grain boundaries can influence the interfacial properties. Here the authors demonstrate nanoscale patterning of a grain boundary by two alternating phases in Cu that exhibit a congruent, diffusionless transition between the two phases.

    • Lena Langenohl
    • Tobias Brink
    • Christian H. Liebscher
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-11
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The uptake of water by polar solids can modify electrical and mass transport properties. This Review discusses hydration mechanisms and surveys case studies of the effects water uptake has on transport properties in different materials.

    • Markus Joos
    • Xiaolan Kang
    • Joachim Maier
    Reviews
    Nature Materials
    Volume: 24, P: 821-834
  • Ultra-pure materials are essential for exploring intrinsic physics, yet achieving such purity often demands extensive crystal growth optimization. Here, the authors reveal that PtSn4 naturally exhibits extremely low defect levels, confirmed through resistivity measurements and microscopy, establishing it as an ideal platform for studying extreme magnetoresistance and topology.

    • Samikshya Sahu
    • Dong Chen
    • Alannah M. Hallas
    ResearchOpen Access
    Communications Materials
    Volume: 6, P: 1-10
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Here the authors combine steady-state angle-resolved photoemission spectroscopy, ellipsometry and ultrafast two-dimensional ultraviolet spectroscopy to examine the role of many-body correlations in anatase TiO2, revealing the existence of strongly bound excitons in single crystals and nanoparticles.

    • E. Baldini
    • L. Chiodo
    • M. Chergui
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-11
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Interplay between structure and composition of grain boundaries remains elusive, particularly at the atomic level. Here, the authors discover the atomic motifs, which is the smallest structural unit, control the most important chemical properties of grain boundaries.

    • Xuyang Zhou
    • Ali Ahmadian
    • Dierk Raabe
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-11
  • Current industrial production of hydrogen peroxide suffers from hefty energy penalties and toxic byproducts. Here, the authors report efficient photocatalytic production of hydrogen peroxide by protonation-induced dispersible porous polymers with good charge-carrier transport properties.

    • Shengdong Wang
    • Zhipeng Xie
    • Cheng Gu
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-7
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • The observation of long-lived coherent oscillations in the nonlinear spectra of photosynthetic proteins has raised significant discussion on the role of quantum effects in biology. Using a model system, the signatures of inter-exciton coherence have been isolated, which has allowed the influence of vibronic coupling to be studied in unprecedented detail.

    • Alexei Halpin
    • Philip J. M. Johnson
    • R. J. Dwayne Miller
    Research
    Nature Chemistry
    Volume: 6, P: 196-201
  • The capability to follow electron motion in solids is necessary to explore the ultimate speed limits of optical charge manipulation and signal processing in optoelectronic devices. Here, the authors reveal the sub-femtosecond dynamics of core excitons in MgF2 and find the dual atomic-solid nature of the exciton quasi-particle to deeply affect its ultrafast dynamics.

    • Matteo Lucchini
    • Shunsuke A. Sato
    • Mauro Nisoli
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-7
  • Attosecond science is beginning to provide the tools to study the previously unattainable crucial first few femtoseconds of photochemical reactions. Here, the authors investigate extremely rapid population transfer via conical intersections in the excited benzene cation, both by experiment and computation.

    • M. C. E. Galbraith
    • S. Scheit
    • J. Mikosch
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-7
  • A process as simple as diffusion should be easy to understand. Butour knowledge of the movements of atoms in semiconductors is still far fromcomplete.

    • Ulrich Gösele
    News & Views
    Nature
    Volume: 408, P: 38-39
  • The use of allosteric transcription factors (aTFs) as biosensors has been constrained by their limited natural ligand repertoire. Here, the authors report a method to screen large libraries of aTF variants to develop biosensors with altered specificities to non-native ligands.

    • Kyle K. Nishikawa
    • Jackie Chen
    • Srivatsan Raman
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-18
  • The nonlinear response of a weak electrolyte to an applied electric field is known as the Wien effect. This is now simulated on a lattice Coulomb gas, therefore providing a platform for investigating system-specific corrections to the firmly established theory accounting for it.

    • V. Kaiser
    • S. T. Bramwell
    • R. Moessner
    Research
    Nature Materials
    Volume: 12, P: 1033-1037