Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 859 results
Advanced filters: Author: Michael W. Friedrich Clear advanced filters
  • Understanding collective behaviour is an important aspect of managing the pandemic response. Here the authors show in a large global study that participants that reported identifying more strongly with their nation reported greater engagement in public health behaviours and support for public health policies in the context of the pandemic.

    • Jay J. Van Bavel
    • Aleksandra Cichocka
    • Paulo S. Boggio
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-14
  • Mathematician who transformed the fields he brought together.

    • Michael J. Barany
    Comments & Opinion
    Nature
    Volume: 566, P: 40
  • Large language models are increasingly used for diverse tasks, yet we have limited insight into their understanding of chemistry. Now ChemBench—a benchmarking framework containing more than 2,700 question–answer pairs—has been developed to assess their chemical knowledge and reasoning, revealing that the best models surpass human chemists on average but struggle with some basic tasks.

    • Adrian Mirza
    • Nawaf Alampara
    • Kevin Maik Jablonka
    ResearchOpen Access
    Nature Chemistry
    Volume: 17, P: 1027-1034
  • HistoPlexer, a deep learning model, generates multiplexed protein expression maps from H&E images, capturing tumour–immune cell interactions. It outperforms baselines, enhances immune subtyping and survival prediction and offers a cost-effective tool for precision oncology.

    • Sonali Andani
    • Boqi Chen
    • Gunnar Rätsch
    ResearchOpen Access
    Nature Machine Intelligence
    Volume: 7, P: 1292-1307
  • Germany is paving the way toward genomics-based personalized healthcare and translational research.

    • Andreas Till
    • Roman A. Siddiqui
    • Oliver Kohlbacher
    Comments & Opinion
    Nature Medicine
    P: 1-4
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Artificial intelligence (AI) system is known to improve dermatologists’ diagnostic accuracy for melanoma. This group applies the eye-tracking technology on dermatologists when diagnosing dermoscopic images of melanomas and reports improved balanced diagnostic accuracy when using an X(explainable) AI system comparing to the standard one.

    • Tirtha Chanda
    • Sarah Haggenmueller
    • Titus J. Brinker
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants.

    • Loïc Yengo
    • Sailaja Vedantam
    • Joel N. Hirschhorn
    ResearchOpen Access
    Nature
    Volume: 610, P: 704-712
  • Routine breast MRI scans provide an opportunity to screen for thoracic aortic aneurysms, which are more fatal in women. Here, the authors show that a fully automated AI tool can screen for these aneurysms using routine breast MRI scans.

    • Dimitrios Bounias
    • Tobit Führes
    • Sebastian Bickelhaupt
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • Psoriasis is a partially heritable skin disorder, the genetic basis of which is not fully understood. Here, the authors use genome-wide association meta-analysis to discover psoriasis susceptibility loci and genes, which encode existing and potential new drug targets.

    • Nick Dand
    • Philip E. Stuart
    • James T. Elder
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • A meta-analysis of genome-wide association studies of type 2 diabetes (T2D) identifies more than 600 T2D-associated loci; integrating physiological trait and single-cell chromatin accessibility data at these loci sheds light on heterogeneity within the T2D phenotype.

    • Ken Suzuki
    • Konstantinos Hatzikotoulas
    • Eleftheria Zeggini
    ResearchOpen Access
    Nature
    Volume: 627, P: 347-357
  • Here the authors apply machine learning approaches to Alzheimer’s genetics, confirm known associations and suggest novel risk loci. These methods demonstrate predictive power comparable to traditional approaches, while also offering potential new insights beyond standard genetic analyses.

    • Matthew Bracher-Smith
    • Federico Melograna
    • Valentina Escott-Price
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • A potential drug should specifically interact with its intended target in order to limit unwanted side effects. Here, the authors fabricate a biodegradable polymer nanoparticle with a fluorescent hepatic uptake transporter ligand to achieve targeted in vivosiRNA delivery and imaging of delivery.

    • Adrian T. Press
    • Anja Traeger
    • Michael Bauer
    ResearchOpen Access
    Nature Communications
    Volume: 5, P: 1-13
  • Photoionization of atoms and molecules is a complex process and requires sensitive probes to explore the ultrafast dynamics. Here the authors combine transient absorption and photo-ion spectroscopy methods to explore and control the attosecond pulse initiated excitation, ionization and Auger decay in Kr atoms.

    • Konrad Hütten
    • Michael Mittermair
    • Birgitta Bernhardt
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-5
  • Navigation relies on detecting left versus right body asymmetries for gaze and course stability. A central three-layer optic flow-sensitive network with competitive lateral disinhibition extracts asymmetries from complex motion patterns.

    • Mert Erginkaya
    • Tomás Cruz
    • M. Eugenia Chiappe
    ResearchOpen Access
    Nature Neuroscience
    Volume: 28, P: 1241-1255