Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 6823 results
Advanced filters: Author: P Hall Clear advanced filters
  • Scanning tunnelling microscopy is used to image pristine electrostatically defined quantum Hall edge states in graphene with high spatial resolution and demonstrate their interaction-driven restructuring.

    • Jiachen Yu
    • Haotan Han
    • Ali Yazdani
    Research
    Nature
    Volume: 648, P: 585-590
  • Vortex dynamics and mutual friction in quantum fluids are intimately connected to the fundamental properties of superfluids. Here, the authors reveal previously unexplored mechanisms underlying the mutual friction coefficients in ultracold Fermi superfluids in the unitary limit, suggesting bound quasiparticles within the vortex core play a significant role.

    • N. Grani
    • D. Hernández-Rajkov
    • G. Roati
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Dirac fermions at apnjunction can exhibit a wide variety of unusual properties. Here, the authors investigate the dynamics of such fermions in a graphene junction using shot noise measurements and demonstrate the crucial role of junction length.

    • N. Kumada
    • F. D. Parmentier
    • P. Roulleau
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-5
  • The dynamics of hole-conjugated fractional quantum Hall states is poorly understood due to the limitations of current experimental probes. Here the authors study the high-frequency dynamics of edge modes at filling factor 2/3, precisely identifying the tunneling charge and damping of constituent charge modes.

    • A. De
    • C. Boudet
    • D. C. Glattli
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • Previous work has shown that helical domain walls can form between states of different spin-polarization during a ferromagnetic spin transition in the fractional quantum Hall regime. Here, the authors study the transport through a single helical domain wall and find strong deviations from a simplified theory of weakly interacting edge channels.

    • Ying Wang
    • Vadim Ponomarenko
    • Leonid P. Rokhinson
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-6
  • A technique that allows the electrical detection of spin-polarized transport in semiconductors without disturbing the spin-polarized current or using magnetic elements has now been demonstrated. The approach could lead to the integration of spintronics elements into semiconductor microelectronic circuits.

    • J. Wunderlich
    • A. C. Irvine
    • T. Jungwirth
    Research
    Nature Physics
    Volume: 5, P: 675-681
  • Conduction in ferroelectric domain walls is now an established phenomenon, yet fundamental aspects of transport physics remain elusive. Here, Campbellet al. report the type, density and mobility of carriers in conducting domain walls in ytterbium manganite using nanoscale Hall effect measurements.

    • M. P. Campbell
    • J.P.V. McConville
    • J. M. Gregg
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-6
  • The current known two-dimensional topological insulators with small band gaps limit the potential for room temperature applications. Here, Chen et al. observe a sizable gap of 129 meV in a 1T'-WSe2 single layer grown on bilayer graphene with in-gap edge state near the layer boundary.

    • P. Chen
    • Woei Wu Pai
    • T.-C. Chiang
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-7
  • Transition metal dichalcogenides exhibit diverse and tunable electronic states. Here the authors reveal a cascade of phase transitions upon increasing hydrostatic pressure in the few-layer 1T-WS2, including a re-entrant superconducting phase emerging from a normal state exhibiting anomalous Hall effect.

    • Md Shafayat Hossain
    • Qi Zhang
    • M. Zahid Hasan
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • The anomalous Hall effect is a macroscopic manifestation of a quantum mechanical effect. Here, Uelandet al. report the observation of a high Hall conductivity in the heavy-fermion compound UCu5, a metallic system, and explain its origin in terms of geometric frustration effects.

    • B.G. Ueland
    • C.F. Miclea
    • J.D. Thompson
    Research
    Nature Communications
    Volume: 3, P: 1-6
  • A magnetoresistance effect that occurs in a platinum layer deposited on a magnon junction consisting of two insulating magnetic yttrium iron garnet layers separated by an antiferromagnetic nickel oxide spacer layer could be used to create spintronic and magnonic devices that are free from Joule heating.

    • C. Y. Guo
    • C. H. Wan
    • X. F. Han
    Research
    Nature Electronics
    Volume: 3, P: 304-308
  • Local probes of quantum Hall states are still in their infancy. Now scanning tunnelling measurements were used to extract the energy gap of candidate non-Abelian fractional states, which are found to be encouragingly large for applications.

    • Yuwen Hu
    • Yen-Chen Tsui
    • Ali Yazdani
    Research
    Nature Physics
    Volume: 21, P: 716-723
  • Skyrmions, when driven by any applied force, experience an addition sideways motion known as the skyrmion hall effect. Here, Brearton et al. present a reciprocal space method for determining the strength of the skyrmion hall effect, making measurement possible for skyrmion lattices.

    • R. Brearton
    • L. A. Turnbull
    • T. Hesjedal
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-6
  • Electronic systems with inverted band structures can support exotic topological insulator and exciton condensate states. Here, the authors demonstrate the formation of a helical exciton condensate in quantum Hall bilayers, and a quark-like quasiparticle confinement-deconfinement transition.

    • D. I. Pikulin
    • P. G. Silvestrov
    • T. Hyart
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • In this work, researchers build a scalable photonic Chern insulator by twisting a fibre during fabrication, breaking an effective time-reversal symmetry and inducing a pseudo-magnetic field. The team reveals a ‘Goldilocks’ regime that guarantees topological protection against fabrication-induced disorder of any symmetry class in the fibre cross-section.

    • Nathan Roberts
    • Brook Salter
    • Anton Souslov
    ResearchOpen Access
    Nature Photonics
    P: 1-8
  • Superlattices, with a length scale and structure that differs from the parent lattice of the host material, are well-known to allow for remarkable new electronic and magnetic properties. Here, Xie et al. synthesize Cr1/4TaS2, and find that it exhibits an unusual anomalous Hall effect below the Néel temperature even in stoichiometric high-quality crystals.

    • Lilia S. Xie
    • Shannon S. Fender
    • D. Kwabena Bediako
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Recently, anyonic statistics were observed in collision experiments on fractional quantum Hall states. Here the authors report signatures of anyonic statistics in the integer quantum Hall state with two copropagating channels, where electrons are split into fractional charges by inter-channel interaction.

    • P. Glidic
    • I. Petkovic
    • F. Pierre
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • The challenges in reliably reproducing the quantum anomalous Hall effect have emerged as a major bottleneck for MnBi2Te4. Here, the authors develop a fabrication method to address this, paving the way for the fabrication of high-quality dissipationless topological transport devices.

    • Yongqian Wang
    • Bohan Fu
    • Chang Liu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • Magnetic skyrmions are topologically protected magnetization textures which can arise in helical magnets and present promise for low-power nanoscale magnetic storage device applications. Here, the authors demonstrate extended phase stability and current-driven dynamics of skyrmions in nanowires of MnSi.

    • Dong Liang
    • John P. DeGrave
    • Song Jin
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-8
  • Fermionic currents of opposing chirality can be spatially filtered without the need for a magnetic field using the quantum geometry of topological bands in single-crystal PdGa.

    • Anvesh Dixit
    • Pranava K. Sivakumar
    • Stuart S. P. Parkin
    ResearchOpen Access
    Nature
    Volume: 649, P: 47-52
  • 2D transition metal ditellurides exhibit nontrivial topological phases, but the controlled bottom-up synthesis of these materials is still challenging. Here, the authors report the layer-by-layer growth of large-area bilayer and trilayer 1T’ MoTe2 films, showing thickness-dependent ferroelectricity and nonlinear Hall effect.

    • Teng Ma
    • Hao Chen
    • Kian Ping Loh
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-10
  • The ground state of charge-neutral bilayer graphene in a strong magnetic field is not fully determined. Now thermal transport measurements show an absence of heat flow through that state, suggesting that its collective excitations could be gapped.

    • Ravi Kumar
    • Saurabh Kumar Srivastav
    • Anindya Das
    ResearchOpen Access
    Nature Physics
    Volume: 20, P: 1941-1947
  • The scaling dimension of fractional quantum Hall anyons shows agreement with expectations following examination of thermal-to-shot-noise crossover measurements by fitting to the predicted finite-temperature expression involving both the scaling dimension of quasiparticles and their charge.

    • A. Veillon
    • C. Piquard
    • F. Pierre
    ResearchOpen Access
    Nature
    Volume: 632, P: 517-521
  • Charge dynamics in perovskite is not well-understood, limited by the knowledge of defect physics and charge recombination mechanism, yet the ABC and SRH models are widely used. Here, the authors introduce advanced PLQY mapping as function of excitation pulse energy and repetition frequency to examine the validity of these models.

    • Alexander Kiligaridis
    • Pavel A. Frantsuzov
    • Ivan G. Scheblykin
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-13
  • Integer and fractional quantum anomalous Hall effects in a rhombohedral pentalayer graphene–hBN moiré superlattice are observed, providing an ideal platform for exploring charge fractionalization and (non-Abelian) anyonic braiding at zero magnetic field.

    • Zhengguang Lu
    • Tonghang Han
    • Long Ju
    Research
    Nature
    Volume: 626, P: 759-764
  • Here the authors compare genetic testing strategies in rare movement disorders, improve diagnostic yield with genome analysis, and establish CD99L2 as an X-linked spastic ataxia gene, showing that CD99L2–CAPN1 signaling disruption likely drives neurodegeneration.

    • Benita Menden
    • Rana D. Incebacak Eltemur
    • Tobias B. Haack
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-21
  • The APOE-ε4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease, but it is not deterministic. Here, the authors show that common genetic variation changes how APOE-ε4 influences cognition.

    • Alex G. Contreras
    • Skylar Walters
    • Timothy J. Hohman
    ResearchOpen Access
    Nature Communications
    P: 1-17
  • Measuring real time magnetization dynamics resulting from Hall effects is hard due to the small signal size. Here Sala et al demonstrate a method of performing Hall resistance measurements with sub-ns resolution, and use it to investigate the switching of GdFeCo dots induced by spin-orbit torques.

    • G. Sala
    • V. Krizakova
    • P. Gambardella
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-9
  • Quantum transport of fractional quasiparticles can drastically differ from conventional charge transport. Here the authors demonstrate Andreev-like reflection of a fractional quasiparticle incident on a barrier in the fractional quantum Hall regime.

    • P. Glidic
    • O. Maillet
    • F. Pierre
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-11
  • A heterodimensional superlattice consisting of an alternating array of a two-dimensional material and a one-dimensional material shows unconventional octahedral stacking and an unexpected room-temperature anomalous Hall effect.

    • Jiadong Zhou
    • Wenjie Zhang
    • Zheng Liu
    Research
    Nature
    Volume: 609, P: 46-51
  • Weyl semimetals with low crystal symmetry, such as TaIrTe4, are known to host large unconventional spin-orbit torques. Here, Pandey et al combine TaIrTe4 with the van der Waals ferromagnet, Fe3GaTe2, and achieve room temperature field-free magnetization switching with an extremely low critical current density.

    • Lalit Pandey
    • Bing Zhao
    • Saroj P. Dash
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Moiré patterns have been experimentally observed in heterostructures comprised of topological insulator films. Here, the authors propose that topological insulator-based moiré heterostructures could be a host of isolated topologically non-trivial moiré minibands for the study of the interplay between topology and correlation.

    • Kaijie Yang
    • Zian Xu
    • Chao-Xing Liu
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • Previous studies of skyrmions in thin film architectures have shown widely-varying magnitudes of the topological Hall effect. Here, Raju et al. show that this variation follows a power-law behaviour driven by chiral spin fluctuations at the phase transition between isolated and lattice skyrmions.

    • M. Raju
    • A. P. Petrović
    • C. Panagopoulos
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-7