Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 182 results
Advanced filters: Author: Sarah Richter Clear advanced filters
  • Genome-wide analyses identify 30 independent loci associated with obsessive–compulsive disorder, highlighting genetic overlap with other psychiatric disorders and implicating putative effector genes and cell types contributing to its etiology.

    • Nora I. Strom
    • Zachary F. Gerring
    • Manuel Mattheisen
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1389-1401
  • Embryonal tumour with multilayered rosettes (ETMR) is a rare and aggressive paediatric brain tumour. Here, the authors analyse intratumour heterogeneity and the tumour microenvironment in ETMR using single-cell and spatial transcriptomics, in vitro cultures, and a 3D forebrain organoid model, finding important aspects – such as the communication with pericytes – for ETMR development and response to therapy.

    • Flavia W. de Faria
    • Nicole C. Riedel
    • Kornelius Kerl
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • Chronic infection with SARS-CoV-2 leads to the emergence of viral variants that show reduced susceptibility to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma.

    • Steven A. Kemp
    • Dami A. Collier
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 592, P: 277-282
  • Sera from vaccinated individuals and some monoclonal antibodies show a modest reduction in neutralizing activity against the B.1.1.7 variant of SARS-CoV-2; but the E484K substitution leads to a considerable loss of neutralizing activity.

    • Dami A. Collier
    • Anna De Marco
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 593, P: 136-141
  • Serological analysis and infection outcomes of participants in the multi-center, prospectively enrolled OCTAVE cohort, comprising 2,686 participants with immune-suppressive diseases who recieved two COVID-19 vaccines, reveals specific clinical phenotypes that might benefit from specific COVID-19 therapeutic strategies.

    • Eleanor Barnes
    • Carl S. Goodyear
    • Deborah Richardson
    ResearchOpen Access
    Nature Medicine
    Volume: 29, P: 1760-1774
  • In a subset of patients with chronic lymphocytic leukemia (CLL) treated with targeted agents, such as ibrutinib, drug resistant subclones emerge. Here, the authors report on transcriptional changes in CLL patients treated with ibrutinib and identify early clonal shifts associated with evolution of resistant clones.

    • Dan A. Landau
    • Clare Sun
    • Catherine J. Wu
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-12
  • A study of the evolution of the SARS-CoV-2 virus in England between September 2020 and June 2021 finds that interventions capable of containing previous variants were insufficient to stop the more transmissible Alpha and Delta variants.

    • Harald S. Vöhringer
    • Theo Sanderson
    • Moritz Gerstung
    ResearchOpen Access
    Nature
    Volume: 600, P: 506-511
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • This study used fine-mapping to analyze genetic regions associated with bipolar disorder, identifying specific risk genes and providing new insights into the biology of the condition that may guide future research and treatment approaches.

    • Maria Koromina
    • Ashvin Ravi
    • Niamh Mullins
    ResearchOpen Access
    Nature Neuroscience
    Volume: 28, P: 1393-1403
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The Omicron variant evades vaccine-induced neutralization but also fails to form syncytia, shows reduced replication in human lung cells and preferentially uses a TMPRSS2-independent cell entry pathway, which may contribute to enhanced replication in cells of the upper airway. Altered fusion and cell entry characteristics are linked to distinct regions of the Omicron spike protein.

    • Brian J. Willett
    • Joe Grove
    • Emma C. Thomson
    ResearchOpen Access
    Nature Microbiology
    Volume: 7, P: 1161-1179
  • Post-international travel quarantine has been widely implemented to mitigate SARS-CoV-2 transmission, but the impacts of such policies are unclear. Here, the authors used linked genomic and contact tracing data to assess the impacts of a 14-day quarantine on return to England in summer 2020.

    • Dinesh Aggarwal
    • Andrew J. Page
    • Ewan M. Harrison
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-13
  • In this study, Aggarwal and colleagues perform prospective sequencing of SARS-CoV-2 isolates derived from asymptomatic student screening and symptomatic testing of students and staff at the University of Cambridge. They identify important factors that contributed to within university transmission and onward spread into the wider community.

    • Dinesh Aggarwal
    • Ben Warne
    • Ian G. Goodfellow
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-16
  • Whole-genome sequencing analysis of individuals with primary immunodeficiency identifies new candidate disease-associated genes and shows how the interplay between genetic variants can explain the variable penetrance and complexity of the disease.

    • James E. D. Thaventhiran
    • Hana Lango Allen
    • Kenneth G. C. Smith
    Research
    Nature
    Volume: 583, P: 90-95
  • Intermediate-depth earthquakes (30-300 km) occur in subducting oceanic slabs, but their generation mechanism remains enigmatic. Here, the authors show through high-pressure and dehydration experiments of antigorite that dehydration-driven stress transfer triggers intermediate-depth earthquakes.

    • Thomas P. Ferrand
    • Nadège Hilairet
    • Alexandre Schubnel
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-11
  • This study reveals that in people with first episode of psychosis receiving oral antipsychotic medication, switching to long-acting injectable antipsychotic therapy may reduce psychotic relapses, especially in vulnerable subgroups, such as those with prior relapses or non-adherence to antipsychotic medication.

    • Alejandro G. Szmulewicz
    • Gonzalo Martínez-Alés
    • Gabriel Devenyi
    Research
    Nature Mental Health
    Volume: 3, P: 421-428
  • A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.

    • Vassily Trubetskoy
    • Antonio F. Pardiñas
    • Jim van Os
    Research
    Nature
    Volume: 604, P: 502-508
  • The authors characterize immune response in Omicron-infected vaccinated individuals and observe an immune enhancement. While increases in neutralizing antibodies and spike T cells are stronger in previously naïve individuals, mucosal antibodies and non-spike responses increase regardless of infection history.

    • Hailey Hornsby
    • Alexander R. Nicols
    • Thushan I. de Silva
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-16
  • Human brain structure changes throughout the lifespan. Brouwer et al. identified genetic variants that affect rates of brain growth and atrophy. The genes are linked to early brain development and neurodegeneration and suggest involvement of metabolic processes.

    • Rachel M. Brouwer
    • Marieke Klein
    • Hilleke E. Hulshoff Pol
    Research
    Nature Neuroscience
    Volume: 25, P: 421-432