Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 51–100 of 412 results
Advanced filters: Author: Sean Lin Clear advanced filters
  • Genetically-encoded indicators with more red-shifted excitation and emission wavelengths are advantageous for in vivo imaging. Here, Dalangin et al. report the engineering of far-red fluorescent Ca2+ indicators and demonstrate their utility for monitoring of all-optical cardiac pacing in embryonic zebrafish.

    • Rochelin Dalangin
    • Bill Z. Jia
    • Robert E. Campbell
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Mucosal surfaces are a primary route of HIV entry, yet the compartmentalisation between mucosal and peripheral immune systems remain a challenge for HIV vaccine candidates. Authors utilise a combination of intranodal tonsil MALT and systemic vaccination in the rhesus macaque model to explore immune responses and protection from highly pathogenic simian homologue of HIV.

    • Jeffy G. Mattathil
    • Asisa Volz
    • Joseph J. Mattapallil
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • Genomic studies often lack representation from diverse populations, limiting equitable insights. Here, the authors show that the BIG Initiative captures extensive genetic diversity and reveals ancestry-linked health disparities in a community-based Mid-South cohort.

    • Silvia Buonaiuto
    • Franco Marsico
    • Vincenza Colonna
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Several non-haematopoietic-cell-derived cytokines, including interleukin (IL)25, have been implicated in inducing T helper 2 (TH2) cell-dependent inflammation, but their precise role has been unclear. Here, IL25 is shown to promote the accumulation of multipotent progenitor cells in gut-associated lymphoid tissue. These cells can give rise to macrophage or granulocyte lineages that promote the differentiation of TH2 cells and contribute to protective immunity against helminth infections.

    • Steven A. Saenz
    • Mark C. Siracusa
    • David Artis
    Research
    Nature
    Volume: 464, P: 1362-1366
  • Single-molecule imaging of nonhomologous end joining in Xenopus egg extract reveals that a single XLF dimer aligns broken DNA ends for ligation.

    • Thomas G. W. Graham
    • Sean M. Carney
    • Joseph J. Loparo
    Research
    Nature Structural & Molecular Biology
    Volume: 25, P: 877-884
  • This study aims to address a critical knowledge gap concerning the unique microstructure in 3D-printed metals by quantitatively characterizing the phase and dislocation density during the printing process using operando synchrotron X-ray diffraction.

    • Lin Gao
    • Yan Chen
    • Tao Sun
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • Complete sequences of chromosomes telomere-to-telomere from chimpanzee, bonobo, gorilla, Bornean orangutan, Sumatran orangutan and siamang provide a comprehensive and valuable resource for future evolutionary comparisons.

    • DongAhn Yoo
    • Arang Rhie
    • Evan E. Eichler
    ResearchOpen Access
    Nature
    Volume: 641, P: 401-418
  • Interpreting bone metastases (BMs) from computed tomography (CT) images remains challenging. Here, the authors develop an AI-based Bone Lesion Detection System - BLDS - and validate it in a cohort of 2,518 patients across five hospitals, showing highly sensitive and accurate performance for BM detection from CT scans.

    • Yun Zhang
    • Jiao Li
    • Chuanmiao Xie
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Analysis of 97,691 high-coverage human blood DNA-derived whole-genome sequences enabled simultaneous identification of germline and somatic mutations that predispose individuals to clonal expansion of haematopoietic stem cells, indicating that both inherited and acquired mutations are linked to age-related cancers and coronary heart disease.

    • Alexander G. Bick
    • Joshua S. Weinstock
    • Pradeep Natarajan
    Research
    Nature
    Volume: 586, P: 763-768
  • Analysis of more than 95% of each diploid human genome of a four-generation, twenty-eight-member family using five complementary short-read and long-read sequencing technologies provides a truth set to understand the most fundamental processes underlying human genetic variation.

    • David Porubsky
    • Harriet Dashnow
    • Evan E. Eichler
    ResearchOpen Access
    Nature
    Volume: 643, P: 427-436
  • The goals, resources and design of the NHLBI Trans-Omics for Precision Medicine (TOPMed) programme are described, and analyses of rare variants detected in the first 53,831 samples provide insights into mutational processes and recent human evolutionary history.

    • Daniel Taliun
    • Daniel N. Harris
    • Gonçalo R. Abecasis
    ResearchOpen Access
    Nature
    Volume: 590, P: 290-299
  • A rare variant burden analytical framework for Mendelian diseases was developed and applied to data from the 100,000 Genomes Project, identifying 69 probable new disease–gene associations.

    • Valentina Cipriani
    • Letizia Vestito
    • Damian Smedley
    ResearchOpen Access
    Nature
    P: 1-9
  • Profiling the immune responses of 56 volunteers vaccinated with BNT162b2 reveals how this mRNA vaccine primes the innate immune system to mount a potent response to SARS-CoV-2 after booster immunization.

    • Prabhu S. Arunachalam
    • Madeleine K. D. Scott
    • Bali Pulendran
    Research
    Nature
    Volume: 596, P: 410-416
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Group 2 innate lymphoid cells (ILC2s) are generally considered to have pro-tumor functions. However, Belz and colleagues demonstrate that ILC2s have anti-melanoma effects due to their high production of the inflammatory cytokine granulocyte-macrophage colony-stimulating factor in the tumor microenvironment.

    • Nicolas Jacquelot
    • Cyril Seillet
    • Gabrielle T. Belz
    Research
    Nature Immunology
    Volume: 22, P: 851-864
  • Although the common genetic variants contributing to blood lipid levels have been studied, the contribution of rare variants is less understood. Here, the authors perform a rare coding and noncoding variant association study of blood lipid levels using whole genome sequencing data.

    • Margaret Sunitha Selvaraj
    • Xihao Li
    • Pradeep Natarajan
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-18
  • A study shows that clonal haematopoiesis of indeterminate potential is associated with an increased risk of chronic liver disease specifically through the promotion of liver inflammation and injury.

    • Waihay J. Wong
    • Connor Emdin
    • Pradeep Natarajan
    Research
    Nature
    Volume: 616, P: 747-754
  • Although the soma ages during life, the germ line of multicellular organisms does not. Here it is shown that Caenorhabditis elegans mutants with increased longevity turn on gene expression programs in somatic tissue that are normally limited to the germ line; this may be the secret behind the increased health and lifespan of these mutant worms.

    • Sean P. Curran
    • Xiaoyun Wu
    • Gary Ruvkun
    Research
    Nature
    Volume: 459, P: 1079-1084
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103