Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 124 results
Advanced filters: Author: Tara L. Moore Clear advanced filters
  • The schooner Tara sailed 140,000 km across the global oceans to sample diverse marine ecosystems and plankton communities. In the Review, members of the Tara Oceans project highlight how resulting data can be used for an integrated understanding of ocean biology.

    • Shinichi Sunagawa
    • Silvia G. Acinas
    • Colomban de Vargas
    Reviews
    Nature Reviews Microbiology
    Volume: 18, P: 428-445
  • Using the Tara Oceans dataset, this study describes global patterns of diatom diversity, abundance and adaptation. The authors identify 25 distinct communities, with the Arctic as a hotspot, and highlight diatom transcriptional features. These insights aid understanding of the ecological roles of diatoms and their responses to global change.

    • Juan J. Pierella Karlusich
    • Karen Cosnier
    • Chris Bowler
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-21
  • This study demonstrates that diatoms with phytochrome photoreceptors can detect and functionally respond to the entire visible light spectrum through these sensors, enabling them to sense depth and regulate photosynthesis accordingly in marine environments.

    • Carole Duchêne
    • Jean-Pierre Bouly
    • Marianne Jaubert
    Research
    Nature
    Volume: 637, P: 691-697
  • Global ocean microbiome survey reveals the bacterial family ‘Candidatus Eudoremicrobiaceae’, which includes some of the most biosynthetically diverse microorganisms in the ocean environment.

    • Lucas Paoli
    • Hans-Joachim Ruscheweyh
    • Shinichi Sunagawa
    ResearchOpen Access
    Nature
    Volume: 607, P: 111-118
  • Plankton communities in the top 150 m of the nutrient-depleted, oligotrophic global ocean that are most associated with carbon export include unexpected taxa, such as Radiolaria, alveolate parasites, and Synechococcus and their phages, and point towards potential functional markers predicting a significant fraction of the variability in carbon export in these regions.

    • Lionel Guidi
    • Samuel Chaffron
    • Gabriel Gorsky
    Research
    Nature
    Volume: 532, P: 465-470
  • A long-period radio transient with coincident radio and X-ray emission and observational properties unlike any known Galactic object has been observed by the Australian Square Kilometre Array Pathfinder.

    • Ziteng Wang
    • Nanda Rea
    • Nithyanandan Thyagarajan
    Research
    Nature
    Volume: 642, P: 583-586
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Merkel cell carcinoma (MCC) is a rare aggressive skin cancer with limited therapeutic options. In this work, the authors identify aurora kinase B (AURKB) as a critical therapeutic target for MCC, supported by tumour shrinkage and increased survival when using the AURKB inhibitor AZD2811 nanoparticle formulation in MCC preclinical models.

    • Tara Gelb
    • Khalid A. Garman
    • Isaac Brownell
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • In the I-SPY2.2 trial, patients with high-risk stage 2/3 breast cancer received neoadjuvant datopotamab–deruxtecan, followed by sequential chemotherapy with or without targeted therapy, with the option of early surgical resection after each block of therapy. In a subgroup of patients, the sequential treatment strategy was superior to standard of care.

    • Katia Khoury
    • Jane L. Meisel
    • Laura J. Esserman
    Research
    Nature Medicine
    Volume: 30, P: 3728-3736
  • In the I-SPY2.2 trial, patients with high-risk stage 2/3 breast cancer received neoadjuvant datopotamab–deruxtecan plus durvalumab, followed by sequential chemotherapy with or without targeted therapy, with the option of early surgical resection after each block of therapy, showing that de-escalation of therapy is possible for several patient subgroups without compromising outcome and avoiding toxicity of standard chemotherapy.

    • Rebecca A. Shatsky
    • Meghna S. Trivedi
    • Laura J. Esserman
    Research
    Nature Medicine
    Volume: 30, P: 3737-3747
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The timing of cellular evolution is poorly constrained. Here, the authors used improved molecular dating approaches to study the evolution of the ATP synthase in light of a dated tree of life thereby providing an absolute timescale for cellular evolution including eukaryotic origins.

    • Tara A. Mahendrarajah
    • Edmund R. R. Moody
    • Anja Spang
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-18
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Integration of phylogenetics, comparative genomics and palaeobiological approaches suggests that the last universal common ancestor lived about 4.2 billion years ago and was a complex prokaryote-grade anaerobic acetogen that was part of an ecosystem.

    • Edmund R. R. Moody
    • Sandra Álvarez-Carretero
    • Philip C. J. Donoghue
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 8, P: 1654-1666
  • A study of the evolution of the SARS-CoV-2 virus in England between September 2020 and June 2021 finds that interventions capable of containing previous variants were insufficient to stop the more transmissible Alpha and Delta variants.

    • Harald S. Vöhringer
    • Theo Sanderson
    • Moritz Gerstung
    ResearchOpen Access
    Nature
    Volume: 600, P: 506-511
  • The Omicron variant evades vaccine-induced neutralization but also fails to form syncytia, shows reduced replication in human lung cells and preferentially uses a TMPRSS2-independent cell entry pathway, which may contribute to enhanced replication in cells of the upper airway. Altered fusion and cell entry characteristics are linked to distinct regions of the Omicron spike protein.

    • Brian J. Willett
    • Joe Grove
    • Emma C. Thomson
    ResearchOpen Access
    Nature Microbiology
    Volume: 7, P: 1161-1179
  • Developmental disorders (DDs) are more prevalent in males, thought to be due to X-linked genetic variation. Here, the authors investigate the burden of X-linked coding variants in 11,044 DD patients, showing that this contributes to ~6% of both male and female cases and therefore does not solely explain male bias in DDs.

    • Hilary C. Martin
    • Eugene J. Gardner
    • Matthew E. Hurles
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-13
  • CAR T cell success requires targeting tumors, but these cells can get trapped in other tissues, such as in the lungs, where they can cause pathology. Here, the authors use a loss-of-function CRISPR screen to identify regulators of CAR T cell tumor trafficking and engineer CAR T cells accordingly to overcome this limitation.

    • Yeonsun Hong
    • Brandon L. Walling
    • Minsoo Kim
    Research
    Nature Immunology
    Volume: 24, P: 1007-1019