Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 173 results
Advanced filters: Author: Taylor Noble Clear advanced filters
  • The APOE-ε4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease, but it is not deterministic. Here, the authors show that common genetic variation changes how APOE-ε4 influences cognition.

    • Alex G. Contreras
    • Skylar Walters
    • Timothy J. Hohman
    ResearchOpen Access
    Nature Communications
    P: 1-17
  • The hydraulic response time of aquifers with similar residence times varies widely across the globe. Water levels in some aquifers containing fossil groundwater can be controlled by modern climates, according to an analysis of 31 major aquifers.

    • Grant Ferguson
    • Mark O. Cuthbert
    • Richard G. Taylor
    Research
    Nature Geoscience
    P: 1-5
  • Deuterated amines play a crucial role as building blocks in drug synthesis and in identifying metabolites of novel pharmaceuticals. This study introduces a dual-functional phosphorus-doped iron single-atom catalyst that efficiently enables both reductive amination and deuteration in a one-pot process, utilizing H2 as the reducing agent and cost-effective D2O as the deuterium source.

    • Haifeng Qi
    • Yueyue Jiao
    • Matthias Beller
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • The photonic applications of hyperbolic phonon polaritons (HPhPs) in anisotropic van der Waals materials are currently limited by their low tunability. Here, the authors report the static and ultrafast wavevector modulation of HPhPs in hexagonal boron nitride by tuning the plasma frequency of doped semiconductor substrates.

    • Mingze He
    • Joseph R. Matson
    • Joshua D. Caldwell
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-8
  • High-pressure minerals in meteorites reflect the conditions prevailing when they were excavated and launched from their parent bodies. Tissint—a recent Martian meteorite—contains an unusual number of large high-pressure minerals, suggesting excavation from an impact of larger magnitude than for previous Martian samples.

    • Ioannis P. Baziotis
    • Yang Liu
    • Lawrence A. Taylor
    Research
    Nature Communications
    Volume: 4, P: 1-7
  • The selective catalytic oxidation of ammonia with palladium is an important reaction in the context of NOx abatement, although limited structural information about the catalyst under reaction conditions is available. Now, an operando study reveals the speciation of palladium and identifies crucial palladium–nitride species.

    • Ellie K. Dann
    • Emma K. Gibson
    • Peter P. Wells
    Research
    Nature Catalysis
    Volume: 2, P: 157-163
  • Efficient evolution of hydrogen via electrocatalysis at low overpotentials is promising for clean energy production. Monolayered nanosheets of chemically exfoliated WS2 are shown to be efficient catalysts for hydrogen evolution at very low overpotentials. The enhanced catalytic performance is associated with the high concentration of the strained metallic octahedral phase in the exfoliated nanosheets.

    • Damien Voiry
    • Hisato Yamaguchi
    • Manish Chhowalla
    Research
    Nature Materials
    Volume: 12, P: 850-855
  • When monolayers of π-conjugated organic semiconductors interact with metal surfaces, most remain semiconducting. In some cases, however, the metallic character of the substrate is seen to extend onto the molecules. A mechanism for this intriguing phenomenon is now suggested and new strategies for chemical surface engineering are proposed.

    • G. Heimel
    • S. Duhm
    • N. Koch
    Research
    Nature Chemistry
    Volume: 5, P: 187-194
  • Spin defects in 2D materials offer practical advantages for quantum sensing over their 3D counterparts. Here, the authors demonstrate quantum sensing under high pressure using boron vacancy centers in hBN placed inside a diamond anvil cell and use it to detect both stress gradient inside the pressure chamber and pressure-induced magnetic phase transitions.

    • Guanghui He
    • Ruotian Gong
    • Chong Zu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Here, the authors present photonic resonator interferometric scattering microscopy, which utilises a dielectric photonic crystal as the sample substrate. The resonant near-field enhancement leads to improved signal to noise ratio without increasing illumination intensity.

    • Nantao Li
    • Taylor D. Canady
    • Brian T. Cunningham
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-9
  • The tight confinement of polaritons in 2D materials leads to increased optical losses. Here, the authors demonstrate image phonon polariton modes in hexagonal boron nitride with an antisymmetric charge distribution that feature quality factors of up to 501 and an effective index of 132.

    • In-Ho Lee
    • Mingze He
    • Sang-Hyun Oh
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-8
  • The thermodynamic stability of atomically precise, liganded metal nanoclusters remains poorly understood. Here, the authors use first-principles calculations to derive a new theory that rationalizes the stability of these nanoclusters as a function of their composition and morphology.

    • Michael G. Taylor
    • Giannis Mpourmpakis
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-8
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Aligning artificial intelligence systems with human morality poses scientific, societal and ethical challenges. Delphi, an artificial intelligence system designed to predict human moral judgements based on John Rawls’s philosophical framework, is developed and tested, highlighting its potential for ethical applications and emphasizing the need to address its limitations and biases.

    • Liwei Jiang
    • Jena D. Hwang
    • Yejin Choi
    ResearchOpen Access
    Nature Machine Intelligence
    Volume: 7, P: 145-160
  • Natural biomolecules including heme-like porphyrins can be applied as sustainable chemical catalysts in lithium-oxygen batteries. Here, the authors show that the heme molecule can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous lithium-oxygen cells.

    • Won-Hee Ryu
    • Forrest S. Gittleson
    • André D. Taylor
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-10
  • Over the past few years, it has become clear that the Moon’s surface is not entirely dry. The direct identification of hydroxyl in glasses produced in lunar soils by the impact of micrometeorites supports the idea that water was delivered to the lunar surface by the solar wind.

    • Yang Liu
    • Yunbin Guan
    • Lawrence A. Taylor
    Research
    Nature Geoscience
    Volume: 5, P: 779-782
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12