Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 184 results
Advanced filters: Author: William Elias Clear advanced filters
  • A theoretical foundation for entrapment methods is presented, along with a method that enables more accurate evaluation of false discovery rate (FDR) control in proteomics mass spectrometry analysis pipelines. Evaluation of popular data-dependent acquisition tools indicates that these generally seem to control the FDR, but data-independent acquisition tools exhibit inconsistent control of the FDR at both the peptide and protein levels.

    • Bo Wen
    • Jack Freestone
    • Uri Keich
    ResearchOpen Access
    Nature Methods
    Volume: 22, P: 1454-1463
  • Wood density is a key control on tree biomass, and understanding its spatial variation improves estimates of forest carbon stock. Sullivan et al. measure >900 forest plots to quantify wood density and produce high resolution maps of its variation across South American tropical forests.

    • Martin J. P. Sullivan
    • Oliver L. Phillips
    • Joeri A. Zwerts
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Genome-wide analyses identify 30 independent loci associated with obsessive–compulsive disorder, highlighting genetic overlap with other psychiatric disorders and implicating putative effector genes and cell types contributing to its etiology.

    • Nora I. Strom
    • Zachary F. Gerring
    • Manuel Mattheisen
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1389-1401
  • Together with a companion paper, the generation of a transcriptomic atlas for the mouse lemur and analyses of example cell types establish this animal as a molecularly tractable primate model organism.

    • Antoine de Morree
    • Iwijn De Vlaminck
    • Mark A. Krasnow
    ResearchOpen Access
    Nature
    Volume: 644, P: 173-184
  • Together with an accompanying paper presenting a transcriptomic atlas of the mouse lemur, interrogation of the atlas provides a rich body of data to support the use of the organism as a model for primate biology and health.

    • Camille Ezran
    • Shixuan Liu
    • Mark A. Krasnow
    ResearchOpen Access
    Nature
    Volume: 644, P: 185-196
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
    • WILLIAM P. D. WIGHTMAN
    Books & Arts
    Nature
    Volume: 187, P: 356
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Solid organ transplant recipients are at increased risk of infectious disease and have unique molecular pathophysiology. Here the authors use host-microbe profiling to assess SARS-CoV-2 infection and immunity in solid organ transplant recipients, showing enhanced viral abundance, impaired clearance, and increased expression of innate immunity genes.

    • Harry Pickering
    • Joanna Schaenman
    • Charles R. Langelier
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • The role of IgG glycosylation in the immune response has been studied, but less is known about IgM glycosylation. Here the authors characterize glycosylation of SARS-CoV-2 spike specific IgM and show that it correlates with COVID-19 severity and affects complement deposition.

    • Benjamin S. Haslund-Gourley
    • Kyra Woloszczuk
    • Mary Ann Comunale
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-19
  • Post-acute sequelae of SARS-CoV-2 (PASC) is still not well understood. Here the authors provide patient reported outcomes from 590 hospitalized COVID-19 patients and show association of PASC with higher respiratory SARS-CoV-2 load and circulating antibody titers, and in some an elevation in circulating fibroblast growth factor 21.

    • Al Ozonoff
    • Naresh Doni Jayavelu
    • Nadine Rouphael
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-17
  • The authors analyse tree responses to an extreme heat and drought event across South America to understand long-term climate resistance. While no more sensitive to this than previous lesser events, forests in drier climates showed the greatest impacts and thus vulnerability to climate extremes.

    • Amy C. Bennett
    • Thaiane Rodrigues de Sousa
    • Oliver L. Phillips
    ResearchOpen Access
    Nature Climate Change
    Volume: 13, P: 967-974
  • In this study, Aggarwal and colleagues perform prospective sequencing of SARS-CoV-2 isolates derived from asymptomatic student screening and symptomatic testing of students and staff at the University of Cambridge. They identify important factors that contributed to within university transmission and onward spread into the wider community.

    • Dinesh Aggarwal
    • Ben Warne
    • Ian G. Goodfellow
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-16
  • A reanalysis of the Voyager 2 flyby of Uranus shows that it occurred during an extreme compression of the planet’s magnetosphere by the upstream solar wind. This would have had significant effects on the measurements made during the flyby.

    • Jamie M. Jasinski
    • Corey J. Cochrane
    • Neil Murphy
    ResearchOpen Access
    Nature Astronomy
    Volume: 9, P: 66-74
  • The Omicron variant evades vaccine-induced neutralization but also fails to form syncytia, shows reduced replication in human lung cells and preferentially uses a TMPRSS2-independent cell entry pathway, which may contribute to enhanced replication in cells of the upper airway. Altered fusion and cell entry characteristics are linked to distinct regions of the Omicron spike protein.

    • Brian J. Willett
    • Joe Grove
    • Emma C. Thomson
    ResearchOpen Access
    Nature Microbiology
    Volume: 7, P: 1161-1179
  • The effect of noncoding genetic variation on acute lymphoblastic leukemia treatment response is not fully understood. Here, the authors functionally evaluated variants associated with pharmacological traits and validate the role of rs1247117 in gene regulation impacting therapeutic response.

    • Kashi Raj Bhattarai
    • Robert J. Mobley
    • Daniel Savic
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-14
  • Sera from vaccinated individuals and some monoclonal antibodies show a modest reduction in neutralizing activity against the B.1.1.7 variant of SARS-CoV-2; but the E484K substitution leads to a considerable loss of neutralizing activity.

    • Dami A. Collier
    • Anna De Marco
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 593, P: 136-141
  • Patricia Munroe, Christopher Newton-Cheh, Andrew Morris and colleagues perform association studies in over 340,000 individuals of European ancestry and identify 66 loci, of which 17 are novel, involved in blood pressure regulation. The risk SNPs are enriched for cis-regulatory elements, particularly in vascular endothelial cells.

    • Georg B Ehret
    • Teresa Ferreira
    • Patricia B Munroe
    Research
    Nature Genetics
    Volume: 48, P: 1171-1184
  • Authors perform an analysis of the patient data and risk factors to evaluate unfavorable outcomes and adverse events in adults with pulmonary tuberculosis treated with a 4-month rifapentine based regimen. Low rifapentine exposure was the most clinically significant risk factor for treatment failure and tuberculosis relapse.

    • Vincent K. Chang
    • Marjorie Z. Imperial
    • Elizabeth Guy
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-12