Abstract
Study of the distribution of the poly(A) tail length of c-myc mRNA in several cell lines revealed a distinct, prevailing population with short poly(A) tails, derived through sequential deadenylation. To elucidate the possible in vivo function of this distinct short tailed c-myc mRNA population, the polyadenylation inhibitor cordycepin was used. This resulted in a decline in steady state c-myc mRNA levels with the remaining messenger mostly oligoadenylated. However, c-MYC proteins did not follow the reduction of the c-myc mRNA. On the other hand, in cells exposed to physiological agents known to downregulate c-myc expression, the reduction of mRNA steady state levels, was reflected upon c-MYC protein levels. The dissociation between c-myc mRNA and protein levels caused by cordycepin was not due to the stabilization of the c-MYC proteins and was not an indiscriminate effect since in the presence of cordycepin, c-fos mRNA and protein levels concomitantly declined. Our data indicate that under these conditions, a long poly(A) tail is not instrumental for c-myc mRNA translation and furthermore, the discrepancy in the steady state of c-myc mRNA level: c-MYC protein ratio between control cells and cells treated with cordycepin indicates that c-myc mRNA is subjected to translational control.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Bachvarova RF. . 1992 Cell 69: 895–897.
Ballantine JEM and Woodland HR. . 1985 FEBS Lett. 180: 224–228.
Beach R and Ross J. . 1978 J. Biol. Chem. 253: 2628–2632.
Bernstein J, Shefler I and Elroy-Stein O. . 1997 J. Biol. Chem. 270: 10559–10565.
Black BL, Lu J and Olson EN. . 1997 Mol. Cell. Biol. 17: 2756–2763.
Brewer G and Ross J. . 1990 Meth. Enzymol. 181: 202–209.
Bravo R, Burckhardt J, Curran T and Muller R. . 1986 EMBO J. 5: 695–700.
Chen CY and Shyu AB. . 1994 Mol. Cell. Biol. 14: 8471–8482.
Chen CY and Shyu AB. . 1995 TIBS 20: 465–470.
Chomczynski P and Sacchi N. . 1987 Analyt. Biochem. 162: 156–159.
Christensen AK, Kahn LE and Bourne CM. . 1987 Am. J. Anat. 178: 1–10.
Dani Ch, Mechti N, Piechaczyk M, Lebleu B, Jeanteur P and Blanchard JM. . 1985 Proc. Natl. Acad. Sci. USA 82: 4896–4899.
Darveau A, Pelletier J and Sonenberg N. . 1985 Proc. Natl. Acad. Sci. USA 82: 2315–2319.
Decker CJ and Parker R. . 1994 TIBS 19: 336–340.
Dehlin E, von Gabain A, Alm G, Dingelmaier R and Resnekov O. . 1996 Mol. Cell. Biol. 16: 468–474.
Gallie DR. . 1991 Genes Dev. 5: 2108–2116.
Grafi G, Sela I and Galili G. . 1993 Mol. Cell. Biol. 13: 3487–3493.
Greenberg ME and Ziff EB. . 1984 Nature 311: 433–438.
Han J, Brown T and Beutler B. . 1990 J. Exp. Med. 171: 465–475.
Hann SR, Thompson CB and Eiseman RN. . 1985 Nature 314: 366–369.
Hann SR and Eiseman RN. . 1984 Mol. Cell. Biol. 4: 2486–2497.
Ioannidis P, Havredaki M, Courtis N and Trangas T. . 1996 Nucl. Acids Res. 24: 4969–4977.
Jackson RJ and Standart N. . 1990 Cell 62: 15–24.
Jackson RJ, Hunt SL, Reynolds JE and Kaminski A. . 1995 Curr. Top. Microbiol. Immunol. 203: 1–29.
Jacobson A and Peltz SW. . 1996 Annu. Rev. Biochem. 65: 693–739.
Kleene KC. . 1989 Development 106: 367–373.
Koromilas A, Lazaris-Karatzas A and Sonenberg N. . 1992 EMBO J. 11: 4153–4158.
Kovary K and Bravo R. . 1991 Mol. Cell. Biol. 11: 2451–2459.
Kozak M. . 1991 J. Cell. Biol. 115: 887–903.
Krumm A, Meulia T, Brunvand M and Groudine M. . 1992 Genes Dev. 6: 2201–2213.
Kruys V, Marinx O, Shaw G, Deschamps J and Huez G. . 1989 Science 245: 852–854.
Kruys V, Wathelet MG and Huez GA. . 1988 Gene 72: 191–200.
Lin J-X J and Vilcek J. . 1987 J. Biol. Chem. 262: 11908–11911.
Lorenzini EC and Scheffler IE. . 1997 Biochem. J. 326: 361–367.
Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. . 1950 J. Biol. Chem. 193: 265–275.
Ma WJ, Chung S and Furneaux H. . 1997 Nucl. Acids Res. 25: 3564–3569.
Maciejewski-Lenoir D, Jirikowski GF, Sanna PP and Bloom FE. . 1993 Proc. Natl. Acad. Sci. USA 90: 1435–1439.
Marth JD, Overell RW, Meier KE, Krebs EG and Permutter RM. . 1988 Nature 332: 171–173.
Munroe D and Jacobson A. . 1990 Mol. Cell. Biol. 10: 3441–3455.
Nabru C, Lafon I, Audigier S, Gensac M-C, Vagner S, Huez G and Prats A-C. . 1997 J. Biol. Chem. 272: 32061–32066.
Paulin F, West MJ, Sullivan NF, Whitney RL, Lyne L and Willis AE. . 1996 Oncogene 13: 505–513.
Ranganathan G, Vu D and Kern PA. . 1997 J. Biol. Chem. 272: 2515–2519.
Rao CD, Pech K, Robbins KC and Aaronson SA. . 1988 Mol. Cell. Biol. 8: 284–292.
Ross J. . 1995 Microbiol. Rev. 59: 423–450.
Sachs A. . 1990 Curr. Opin. Cell. Biol. 2: 1092–1098.
Sachs A and Wahle E. . 1993 J. Biol. Chem. 268: 22955–22958.
Sachs A, Sarnow P and Hentze M. . 1997 Cell 89: 831–838.
Salles FJ, Lieberfarb ME, Wreden C, Gergen JP and Strickland S. . 1994 Science 266: 1996–1999.
Shaw G and Kamen R. . 1986 Cell 46: 659–667.
Sheets MD, Fox CA, Hunt T, Van De Wounde G and Wickens M. . 1994 Genes Dev. 8: 926–938.
Sheets MD, Wu M and Wickens M. . 1995 Nature 374: 511–516.
Spotts GD and Hann SR. . 1990 Mol. Cell. Biol. 10: 3952–3964.
Stoeckle M and Guan L. . 1993 BioTeckniques 15: 230–231.
Stoneley M, Paulin F, Le Quesne J, Chappell S and Willis AE. . 1998 Oncogene 16: 423–428.
Swartwout SG and Kinninburgh AJ. . 1989 Mol. Cell. Biol. 9: 288–295.
Tarun SZ and Sachs AB. . 1995 Genes Dev. 9: 2997–3007.
Thompson CB, Challoner PB, Neiman PE and Groudine M. . 1985 Nature 314: 363–366.
Yang Q, McDermott PJ, Duzic E, Pleij WA, Sherlock JD and Lanier SM. . 1997 J. Biol. Chem. 272: 15466–15473.
Zeevi M, Nevins JR and Darnell Jr JE. . 1982 Mol. Cell. Biol. 2: 517–525.
Zubiaga AM, Belasco JG and Greenberg ME. . 1995 Mol. Cell. Biol. 15: 2219–2230.
Acknowledgements
We would like to thank Professor J Vilcek for providing the FS-4 human cell line. This work was partially supported by a grant from the Greek Ministry of Health to TT.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ioannidis, P., Courtis, N., Havredaki, M. et al. The polyadenylation inhibitor cordycepin (3′dA) causes a decline in c-MYC mRNA levels without affecting c-MYC protein levels. Oncogene 18, 117–125 (1999). https://doi.org/10.1038/sj.onc.1202255
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/sj.onc.1202255
Keywords
This article is cited by
-
Cordycepin inhibits colon cancer proliferation by suppressing MYC expression
BMC Pharmacology and Toxicology (2022)


