Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Telomere dysfunction: multiple paths to the same end

Abstract

The molecular cloning of telomerase and telomere components has enabled the analysis and precise manipulation of processes that regulate telomere length maintenance. In mammalian cells and in other organisms, we now recognize that disruption of telomere integrity via any one of a number of perturbations induces chromosome instability and the activation of DNA damage responses. Thus, telomere dysfunction may represent a physiological trigger of the DNA damage or apoptotic response in an analogous fashion to other genotoxic insults that introduce chromosome breaks. Initial studies in mice lacking the murine telomerase RNA and in cells expressing a dominant negative version of the telomere binding protein TRF2 revealed a strong p53-dependent response to telomere dysfunction. Yet, telomere dysfunction exhibits p53-independent effects as well, an observation supported by p53-independent responses to telomere dysfunction in p53 mutant human tumor cell lines and mouse cells. As most tumors are compromised for p53 function, examination of this p53-independent response warrants closer attention. A better understanding of this p53-independent response may prove critical for determining the ultimate utility of telomerase inhibitors in the clinic. This review will summarize our current understanding of the molecular responses to telomere dysfunction in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA . 2000 Nature 406: 641–645

  • Beattie TL, Zhou W, Robinson MO, Harrington L . 1998 Curr. Biol. 8: 177–180

  • Blasco MA, Funk W, Villeponteau B, Greider CW . 1995 Science 269: 1267–1270

  • Blasco MA, Lee HW, Hande MP, Samper E, Landsorp PM, DePinho RA, Greider CW . 1997 Cell 91: 25–34

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE . 1998 Science 279: 349–352

  • Broccoli D, Smogorzewska A, Chong L, de Lange T . 1997 Nature Genet. 17: 231–235

  • Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR . 1997 Nature Med. 3: 1271–1274

  • Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA . 1999 Cell 97: 527–538

  • Chong L, Van S-B, Broccoli D, Erdjument B-H, Hanish J, Tempst P, DeLange T . 1995 Science 270: 1663–1667

  • Colgin LM, Wilkinson C, Englezou A, Kilian A, Robinson MO, Reddel RR . 2000 Neoplasia 2: 426–432

  • Counter CM, Avillion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S . 1992 EMBO J. 11: 1921–1929

  • de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, Varmus HE . 1990 Mol. Cell. Biol. 10: 518–527

  • De Laurenzi V, Melino G . 2000 Ann. NY Acad. Sci. 926: 90–100

  • Dunham MA, Neumann AA, Fasching CL, Reddel RR . 2000 Nature Genet. 26: 447–450

  • Engelhardt M, Drullinsky P, Guillem J, Moore MA . 1997 Clin. Cancer Res. 3: 1931–1941

  • Engelhardt M, Ozkaynak MF, Drullinsky P, Sandoval C, Tugal O, Jayabose S, Moore MAS . 1998 Leukemia 12: 13–24

  • Greider CW . 1996 Annu. Rev. Biochem. 65: 377–365

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T, Karlseder J, Broccoli D, Dai Y, Hardy S . 1999 Cell 97: 503–514

  • Guiducci C, Cerone MA, Bacchetti S . 2001 Oncogene 20: 714–725

  • Guo C, Geverd D, Liao R, Hamad N, Counter CM, Price DT . 2001 J. Urol. 166: 694–698

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . 1999a Nature 400: 464–468

  • Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, Beijersbergen RL, Knoll JH, Meyerson M, Weinberg RA . 1999b Nature Med. 5: 1164–1170

  • Hakem R, de la Pompa JL, Elia A, Potter J, Mak TW . 1997 Nature Genet. 16: 298–302

  • Harley CB . 1991 Mutat. Res. 256: 271–282

  • Harley CB . 1996 Telomeres Greider EHBaCW (ed) Cold Spring Harbor: Cold Spring Harbor Laboratory Press pp 247–263

    Google Scholar 

  • Harrington L, Zhou W, McPhail T, Oulton R, Yeung DS, Mar V, Bass MB, Robinson MO . 1997 Genes Dev. 11: 3109–3115

  • Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC . 1990 Nature 346: 866–868

  • Herbert BS, Pitts AE, Baker SI, Hamilton SE, Wright WE, Shay JW, Corey DR . 1999 Proc. Natl. Acad. Sci. USA 96: 14276–14281

  • Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T . 1999 Science 283: 1321–1325

  • Kass-Eisler A, Greider CW . 2000 Trends Biochem. Sci. 25: 200–204

  • Kim MM, Rivera MA, Botchkina IL, Shalaby R, Thor AD, Blackburn EH . 2001 Proc. Natl. Acad. Sci. USA 98: 7982–7987

  • Lee HW, Blasco MA, Gottlieb GJ, Horner JW, Greider CW, DePinho RA . 1998 Nature 392: 569–574

  • Lee KH, Rudolph KL, Ju Y, Greenberg RA, Cannizzaro L, Chin L, Weiler SR, DePinho RA . 2001 Proc. Natl. Acad. Sci. USA 98: 3381–3386

  • Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR . 1997 Science 276: 561–567

  • Ludwig A, Saretzki G, Holm PS, Tiemann F, Lorenz M, Emrich T, Harley CB, von Zglinicki T . 2001 Cancer Res. 61: 3053–3061

  • Marusic L, Anton M, Tidy A, Wang P, Villeponteau B, Bacchetti S . 1997 Mol. Cell. Biol. 17: 6394–6401

  • Morales CP, Holt SE, Ouellette M, Kaur KJ, Yan Y, Wilson KS, White MA, Wright WE, Shay JW . 1999 Nature Genet. 21: 115–118

  • Nakayama J, Tahara H, Tahara E, Saito M, Ito K, Nakamura H, Nakanishi T, Tahara E, Ide T, Ishikawa F . 1998 Nature Genet. 18: 65–68

  • Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA . 1999 Cell 96: 701–712

  • Rudolph KL, Millard M, Bosenberg MW, DePinho RA . 2001 Nature Genet. 28: 155–159

  • Shay JW, Bacchetti S . 1997 Eur. J. Cancer 33: 787–791

  • van Steensel B, Smorgorzewska A, De Lange T . 1998 Cell 92: 401–413

  • Vaziri H, Benchimol S . 1998 Curr. Biol. 8: 279–282

  • Vaziri H, Squire JA, Pandita TK, Bradley G, Kuba RM, Zhang H, Gulyas S, Hill RP, Nolan GP, Benchimol S . 1999 Mol. Cell. Biol. 19: 2373–2379

  • Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, Bodnar AG, Lichtsteiner S, Kim NW, Trager JB, Taylor RD, Carlos R, Andrews WH, Wright WE, Shay JW, Harley CB, Morin GB . 1997 Nature Genet. 17: 498–502

  • Wong KK, Chang S, Weiler SR, Ganesan S, Chaudhuri J, Zhu C, Artandi SE, Rudolph KL, Gottlieb GJ, Chin L, Alt FW, DePinho RA . 2000 Nature Genet 26: 85–88

  • Yi X, White DM, Aisner DL, Baur JA, Wright WE, Shay JW . 2000 Neoplasia 2: 433–440

  • Zhang X, Mar V, Zhou W, Harrington L, Robinson MO . 1999 Genes Dev. 13: 2388–2399

  • Zhu XD, Kuster B, Mann M, Petrini JH, de Lange T . 2000 Nature Genet. 25: 347–352

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murray O Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrington, L., Robinson, M. Telomere dysfunction: multiple paths to the same end. Oncogene 21, 592–597 (2002). https://doi.org/10.1038/sj.onc.1205084

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.onc.1205084

Keywords

This article is cited by

Search

Quick links