Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TA-p63-γ regulates expression of ΔN-p63 in a manner that is sensitive to p53

Abstract

Genetic analysis indicates that TP63 is required for establishment and preservation of self-renewing progenitors within the basal layer of several epithelial structures, however, the specific contributions of transactivating (TA-p63) and dominant-negative (ΔN-p63) isoforms remain largely undefined. Recent studies have suggested a model in which TA-p63 plays an important role in the establishment of progenitor populations in which expression of ΔN-p63 contributes to the preservation of self-renewing capacity. Our previous studies indicate that ΔN-p63 is a transcriptional target of p53, however, the absence of overt epithelial deficiencies in p53−/− mice and reports of increased expression of ΔN-p63 in p53−/− mice suggest p53-independent mechanisms also contribute to expression of ΔN-p63. Here, we present data indicating that, prolonged loss of p53 leads to the activation of a p53-independent mechanism for transcriptional regulation of ΔN-p63. This p53-independent mechanism is sensitive to ectopic p53 but not to a p53 mutant that lacks the transactivation domain. We further show that in cells in which p53 is expressed TA-p63-γ protein is destabilized in a manner that is p53 dependent and sensitive to pharmacologic inhibition of the 26S proteosome. Consistent with this observation, we demonstrate that loss of p53 leads to the stabilization of TA-p63-γ that is reversible by ectopic p53. Finally, we present evidence that disruption of TA-p63-γ expression leads to decreased expression of ΔN-p63 and that overexpression of TA-p63-γ was sufficient to enhance the activity of the ΔN-p63 promoter. Taken together, our studies indicate that TA-p63-γ is capable of activating expression of ΔN-p63 and that this mechanism may account for p53-independent expression of ΔN-p63.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 6
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Proc Natl Acad Sci USA 100: 3983–3988.

  • Brunner HG, Hamel BC, Bokhoven Hv H . (2002). Am J Med Genet 112: 284–290.

  • Celli J, Duijf P, Hamel BC, Bamshad M, Kramer B, Smits AP et al. (1999). Cell 99: 143–153.

  • Chepko G, Smith GH . (1999). J Mammary Gland Biol Neoplasia 4: 35–52.

  • Clarke RB, Anderson E, Howell A, Potten CS . (2003). Cell Prolif 36(Suppl 1): 45–58.

  • Di Como CJ, Urist MJ, Babayan I, Drobnjak M, Hedvat CV, Teruya-Feldstein J et al. (2002). Clin Cancer Res 8: 494–501.

  • Dick JE . (1996). Semin Immunol 8: 197–206.

  • DiRenzo J, Signoretti S, Nakamura N, Rivera-Gonzalez R, Sellers W, Loda M et al. (2002). Cancer Res 62: 89–98.

  • Dohn M, Zhang S, Chen X . (2001). Oncogene 20: 3193–3205.

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. (2003). Genes Dev 17: 1253–1270.

  • Harmes DC, Bresnick E, Lubin EA, Watson JK, Heim KE, Curtin JC et al. (2003). Oncogene 22: 7607–7616.

  • Hope KJ, Jin L, Dick JE . (2004). Nat Immunol 5: 738–743.

  • Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ et al. (2000). Oncogene 19: 1052–1058.

  • Jerry DJ, Pinkas J, Kuperwasser C, Dickinson ES, Naber SP . (1999). J Mammary Gland Biol Neoplasia 4: 177–181.

  • Kaelin Jr WG . (1999). Oncogene 18: 7701–7705.

  • Koster MI, Huntzinger KA, Roop DR . (2002). J Invest Dermatol Symp Proc 7: 41–45.

  • Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR . (2004). Genes Dev 18: 126–131.

  • Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ et al. (1996). Science 274: 948–953.

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A . (1999). Nature 398: 708–713.

  • Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ . (2003). Nature 425: 962–967.

  • Nylander K, Coates PJ, Hall PA . (2000). Int J Cancer 87: 368–372.

  • Nylander K, Vojtesek B, Nenutil R, Lindgren B, Roos G, Zhanxiang W et al. (2002). J Pathol 198: 417–427.

  • Pardal R, Clarke MF, Morrison SJ . (2003). Nat Rev Cancer 3: 895–902.

  • Parsa R, Yang A, McKeon F, Green H . (1999). J Invest Dermatol 113: 1099–1105.

  • Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S et al. (2001). Proc Natl Acad Sci USA 98: 3156–3161.

  • Ratovitski EA, Patturajan M, Hibi K, Trink B, Yamaguchi K, Sidransky D . (2001). Proc Natl Acad Sci USA 98: 1817–1822.

  • Rosner B, Colditz GA, Willett WC . (1994). Am J Epidemiol 139: 819–835.

  • Smalley M, Ashworth A . (2003). Nat Rev Cancer 3: 832–844.

  • Smith GH, Chepko G . (2001). Microsc Res Tech 52: 190–203.

  • Suliman Y, Opitz OG, Avadhani A, Burns TC, El-Deiry W, Wong DT et al. (2001). Cancer Res 61: 6467–6473.

  • Trosko JE, Chang CC . (2003). Oncol Res 13: 353–357.

  • van Bokhoven H, Hamel BC, Bamshad M, Sangiorgi E, Gurrieri F, Duijf PH et al. (2001). Am J Hum Genet 69: 481–492.

  • van Bokhoven H, McKeon F . (2002). Trends Mol Med 8: 133–139.

  • Waltermann A, Kartasheva NN, Dobbelstein M . (2003). Oncogene 22: 5686–5693.

  • Welm AL, Kim S, Welm BE, Bishop JM . (2005). Proc Natl Acad Sci USA 102: 4324–4329.

  • Welm B, Behbod F, Goodell MA, Rosen JM . (2003). Cell Prolif 36(Suppl 1): 17–32.

  • Wu G, Nomoto S, Hoque MO, Dracheva T, Osada M, Lee CC et al. (2003). Cancer Res 63: 2351–2357.

  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. (1998). Mol Cell 2: 305–316.

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT et al. (1999). Nature 398: 714–718.

  • Ying H, Chang DL, Zheng H, McKeon F, Xiao ZX . (2005). Mol Cell Biol 25: 6154–6164.

Download references

Acknowledgements

We thank Dr Radu V Stan for his help with antibody generation and Dr David Robbins for sharing cell lines. This work was supported by a Scholar's Award from the V Foundation for Cancer Research to JDR. It was further supported by the National Cancer Institute Grant # 1RO1 CA108539 to JDR.

Author information

Authors and Affiliations

Corresponding author

Correspondence to J DiRenzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Li, H., Cherukuri, P. et al. TA-p63-γ regulates expression of ΔN-p63 in a manner that is sensitive to p53. Oncogene 25, 2349–2359 (2006). https://doi.org/10.1038/sj.onc.1209270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.onc.1209270

Keywords

This article is cited by

Search

Quick links