Abstract
RUNX1 (AML1) is a gene that is frequently disrupted by chromosomal translocations in acute leukemia. Like its Drosophila homolog Runt, RUNX1 both activates and represses transcription. Both Runt and RUNX1 are required for gene silencing during development and a central domain of RUNX1, termed repression domain 2 (RD2), was defined as being required for transcriptional repression and for the silencing of CD4 during T-cell maturation in thymic organ cultures. Although transcriptional co-repressors are known to contact other repression domains in RUNX1, the factors that bind to RD2 had not been defined. Therefore, we tested whether RD2 contacts histone-modifying enzymes that may mediate both repression and gene silencing. We found that RD2 contacts SUV39H1, a histone methyltransferase, via two motifs and that endogenous Suv39h1 associates with a Runx1-regulated repression element in murine erythroleukemia cells. In addition, one of these SUV39H1-binding motifs is also sufficient for binding to histone deacetylases 1 and 3, and both of these domains are required for full RUNX1-mediated transcriptional repression. The association between RUNX1, histone deacetylases and SUV39H1 provides a molecular mechanism for repression and possibly gene silencing mediated by RUNX1.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Amann JM, Nip J, Strom DK, Lutterbach B, Harada H, Lenny N et al. (2001). Mol Cell Biol 21: 6470–6483.
Aronson BD, Fisher AL, Blechman K, Caudy M, Gergen JP . (1997). Mol Cell Biol 17: 5581–5587.
Britos-Bray M, Friedman AD . (1997). Mol Cell Biol 17: 5127–5135.
Cameron ER, Neil JC . (2004). Oncogene 23: 4308–4314.
Chakrabarti SR, Nucifora G . (1999). Biochem Biophys Res Commun 264: 871–877.
Chakraborty S, Sinha KK, Senyuk V, Nucifora G . (2003). Oncogene 22: 5229–5237.
Durst KL, Lutterbach B, Kummalue T, Friedman AD, Hiebert SW . (2003). Mol Cell Biol 23: 607–619.
el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J et al. (1994). Cancer Res 54: 1169–1174.
Erickson PF, Robinson M, Owens G, Drabkin HA . (1994). Cancer Res 54: 1782–1786.
Fenrick R, Wang L, Nip J, Amann JM, Rooney RJ, Walker-Daniels J et al. (2000). Mol Cell Biol 20: 5828–5839.
Firestein R, Cui X, Huie P, Cleary ML . (2000). Mol Cell Biol 20: 4900–4909.
Gergen JP, Wieschaus EF . (1985). Dev Biol 109: 321–335.
Goetz TL, Gu TL, Speck NA, Graves BJ . (2000). Mol Cell Biol 20: 81–90.
Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P et al. (1995). Proc Natl Acad Sci USA 92: 4917–4921.
Gu TL, Goetz TL, Graves BJ, Speck NA . (2000). Mol Cell Biol 20: 91–103.
Guidez F, Petrie K, Ford AM, Lu H, Bennett CA, MacGregor A et al. (2000). Blood 96: 2557–2561.
Hiebert SW, Sun W, Davis JN, Golub T, Shurtleff S, Buijs A et al. (1996). Mol Cell Biol 16: 1349–1355.
Hildebrand D, Tiefenbach J, Heinzel T, Grez M, Maurer AB . (2001). J Biol Chem 276: 9889–9895.
Imai Y, Kurokawa M, Yamaguchi Y, Izutsu K, Nitta E, Mitani K et al. (2004). Mol Cell Biol 24: 1033–1043.
Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC et al. (2001). EMBO J 20: 5232–5241.
Javed A, Guo B, Hiebert S, Choi JY, Green J, Zhao SC et al. (2000). J Cell Sci 113: 2221–2231.
Jenuwein T, Allis CD . (2001). Science 293: 1074–1080.
Kanno T, Kanno Y, Chen L, Ogawa E, Kim W, Ito Y . (1998). Mol Cell Biol 18: 2444–2454.
Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T . (2001). Nature 410: 116–120.
Lenny N, Meyers S, Hiebert SW . (1995). Oncogene 11: 1761–1769.
Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z, Groner Y . (1998). Proc Natl Acad Sci USA 95: 11590–11595.
Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M et al. (1993). Science 261: 1041–1044.
Lutterbach B, Hou Y, Durst KL, Hiebert SW . (1999). Proc Natl Acad Sci USA 96: 12822–12827.
Lutterbach B, Sun D, Schuetz J, Hiebert SW . (1998a). Mol Cell Biol 18: 3601–3611.
Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E, Hiebert SW . (2000). J Biol Chem 275: 651–656.
Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR et al. (1998b). Mol Cell Biol 18: 7176–7184.
Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y et al. (1993). EMBO J 12: 2715–2721.
Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . (1991). Proc Natl Acad Sci USA 88: 10431–10434.
Nishimura M, Fukushima-Nakase Y, Fujita Y, Nakao M, Toda S, Kitamura N et al. (2004). Blood 103: 562–570.
Nucifora G, Begy CR, Erickson P, Drabkin HA, Rowley JD . (1995). Proc Natl Acad Sci USA 92: 4917–4921.
Peterson LF, Zhang DE . (2004). Oncogene 23: 4255–4262.
Raynaud S, Cave H, Baens M, Bastard C, Cacheux V, Grosgeorge J et al. (1995). Gene 159: 245–248.
Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M et al. (2000). Nature 406: 593–599.
Romana SP, Mauchauffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R et al. (1995). Blood 85: 3662–3670.
Swantek D, Gergen JP . (2004). Development 131: 2281–2290.
Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T et al. (2002). Cell 111: 621–633.
Telfer JC, Hedblom EE, Anderson MK, Laurent MN, Rothenberg EV . (2004). J Immunol 172: 4359–4370.
van Wijnen AJ, Stein GS, Gergen JP, Groner Y, Hiebert SW, Ito Y et al. (2004). Oncogene 23: 4209–4210.
Wheeler JC, VanderZwan C, Xu X, Swantek D, Tracey WD, Gergen JP . (2002). Nat Genet 32: 206–210.
Zeng C, McNeil S, Pockwinse S, Nickerson J, Shopland L, Lawrence JB et al. (1998). Proc Natl Acad Sci USA 95: 1585–1589.
Zhang DE, Hetherington CJ, Meyers S, Rhoades KL, Larson CJ, Chen HM et al. (1996). Mol Cell Biol 16: 1231–1240.
Acknowledgements
We thank members of the Hiebert lab for critical evaluation of the manuscript. We thank the Vanderbilt-Ingram Cancer Center and the VICC DNA sequencing core for support. This work was supported by NIH/NCI grants RO1-CA64140, RO1-CA77274, and RO1-87549 (SWH), RO1-HL49118 (SJB), a Merit Review Award from the Department of Veterans Affairs (SJB), and a Center grant from the National Cancer Institute (CA68485). BJI was a fellow of the Leukemia and Lymphoma Society of America.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reed-Inderbitzin, E., Moreno-Miralles, I., Vanden-Eynden, S. et al. RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription. Oncogene 25, 5777–5786 (2006). https://doi.org/10.1038/sj.onc.1209591
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/sj.onc.1209591
Keywords
This article is cited by
-
Repeat to gene expression ratios in leukemic blast cells can stratify risk prediction in acute myeloid leukemia
BMC Medical Genomics (2021)
-
RUNX1 contributes to the mesenchymal subtype of glioblastoma in a TGFβ pathway-dependent manner
Cell Death & Disease (2019)
-
Combination treatment of acute myeloid leukemia cells with DNMT and HDAC inhibitors: predominant synergistic gene downregulation associated with gene body demethylation
Leukemia (2019)
-
Sound of silence: the properties and functions of repressive Lys methyltransferases
Nature Reviews Molecular Cell Biology (2015)
-
The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells
Blood Cancer Journal (2015)


