Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

XRCC4 in G1 suppresses homologous recombination in S/G2, in G1 checkpoint-defective cells

Abstract

Non-homologous end joining (NHEJ) and homologous recombination (HR) are two pathways that can compete or cooperate for DNA double-strand break (DSB) repair. NHEJ was previously shown to act throughout the cell cycle whereas HR is restricted to late S/G2. Paradoxically, we show here that defect in XRCC4 (NHEJ) leads to over-stimulation of HR when cells were irradiated in G1, not in G2. However, XRCC4 defect did not modify the strict cell cycle regulation for HR (i.e. in S/G2) as attested by (i) the formation of Rad51 foci in late S/G2 whatever the XRCC4 status, and (ii) the fact that neither Rad51 foci nor HR (gene conversion plus single-strand annealing) events induced by ionizing radiation were detected when cells were maintained blocked in G1. Finally, both γ-H2AX analysis and pulse field gel electrophoresis showed that following irradiation in G1, some DSBs reached S/G2 in NHEJ-defective cells. Taken together, our results show that when cells are defective in G1/S arrest, DSB produced in G1 and left unrepaired by XRCC4 can be processed by HR but in late S/G2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R et al. (1998). ES cells do not activate p53-dependent stress responses and undergo p53- independent apoptosis in response to DNA damage. Curr Biol 8: 145–155.

    Article  CAS  Google Scholar 

  • Allen C, Kurimasa A, Brenneman MA, Chen DJ, Nickoloff JA . (2002). DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. Proc Natl Acad Sci USA 99: 3758–3763.

    Article  CAS  Google Scholar 

  • Amor M, Parker KL, Globerman H, New MI, White PC . (1988). Mutation in the CYP21B gene (Ile-172 – Asn) causes steroid 21- hydroxylase deficiency. Proc Natl Acad Sci USA 85: 1600–1604.

    Article  CAS  Google Scholar 

  • Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J et al. (2004). Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303: 92–95.

    Article  CAS  Google Scholar 

  • Audebert M, Salles B, Calsou P . (2004). Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279: 55117–55126.

    Article  CAS  Google Scholar 

  • Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J et al. (1999). Current Protocols in Molecular Biology. John Wiley & Sons Inc.: Boston.

    Google Scholar 

  • Belmaaza A, Chartrand P . (1994). One-sided invasion events in homologous recombination at double-strand breaks. Mutat Res 314: 199–208.

    Article  CAS  Google Scholar 

  • Belmaaza A, Wallenburg JC, Brouillette S, Gusew N, Chartrand P . (1990). Genetic exchange between endogenous and exogenous LINE-1 repetitive elements in mouse cells. Nucleic Acids Res 18: 6385–6391.

    Article  CAS  Google Scholar 

  • Bertrand P, Lambert S, Joubert C, Lopez BS . (2003). Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells. Oncogene 22: 7587–7592.

    Article  CAS  Google Scholar 

  • Bertrand P, Saintigny Y, Lopez BS . (2004). p53's double life: transactivation-independent repression of homologous recombination. Trends Genet 20: 235–243.

    Article  CAS  Google Scholar 

  • Boucher D, Hindo J, Averbeck D . (2004). Increased repair of gamma-induced DNA double-strand breaks at lower dose-rate in CHO cells. Can J Physiol Pharmacol 82: 125–132.

    Article  CAS  Google Scholar 

  • Brouillette S, Chartrand P . (1987). Intermolecular recombination assay for mammalian cells that produces recombinants carrying both homologous and nonhomologous junctions. Mol Cell Biol 7: 2248–2255.

    Article  CAS  Google Scholar 

  • Cheong N, Wang X, Wang Y, Iliakis G . (1994). Loss of S-phase-dependent radioresistance in irs-1 cells exposed to X-rays. Mutat Res 314: 77–85.

    Article  CAS  Google Scholar 

  • Cohen PE, Pollard JW . (2001). Regulation of meiotic recombination and prophase I progression in mammals. Bioessays 23: 996–1009.

    Article  CAS  Google Scholar 

  • Delacote F, Han M, Stamato TD, Jasin M, Lopez BS . (2002). An xrcc4 defect or Wortmannin stimulates homologous recombination specifically induced by double-strand breaks in mammalian cells. Nucleic Acids Res 30: 3454–3463.

    Article  CAS  Google Scholar 

  • Difilippantonio MJ, Petersen S, Chen HT, Johnson R, Jasin M, Kanaar R et al. (2002). Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med 196: 469–480.

    Article  CAS  Google Scholar 

  • Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE et al. (2000). DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404: 510–514.

    Article  CAS  Google Scholar 

  • Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M et al. (2005). CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434: 598–604.

    Article  CAS  Google Scholar 

  • Fabre F, Boulet A, Roman H . (1984). Gene conversion at different points in the mitotic cycle of Saccharomyces cerevisiae. Mol Gen Genet 195: 139–143.

    Article  CAS  Google Scholar 

  • Ferguson DO, Sekiguchi JM, Chang S, Frank KM, Gao Y, DePinho RA et al. (2000a). The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc Natl Acad Sci USA 97: 6630–6633.

    Article  CAS  Google Scholar 

  • Ferguson DO, Sekiguchi JM, Frank KM, Gao Y, Sharpless NE, Gu Y et al. (2000b). The interplay between nonhomologous end-joining and cell cycle checkpoint factors in development, genomic stability, and tumorigenesis. Cold Spring Harb Symp Quant Biol 65: 395–403.

    Article  CAS  Google Scholar 

  • Guirouilh-Barbat J, Huck S, Bertrand P, Pirzio L, Desmaze C, Sabatier L et al. (2004). Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell 14: 611–623.

    Article  CAS  Google Scholar 

  • Haaf T, Golub EI, Reddy G, Radding CM, Ward DC . (1995). Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci USA 92: 2298–2302.

    Article  CAS  Google Scholar 

  • Hinz JM, Yamada NA, Salazar EP, Tebbs RS, Thompson LH . (2005). Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells. DNA Repair (Amsterdam) 4: 782–792.

    Article  CAS  Google Scholar 

  • Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W et al. (2004). DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431: 1011–1017.

    Article  CAS  Google Scholar 

  • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J et al. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37–45.

    Article  CAS  Google Scholar 

  • Jeggo PA . (1990). Studies on mammalian mutants defective in rejoining double-strand breaks in DNA. Mutat Res 239: 1–16.

    Article  CAS  Google Scholar 

  • Jeggo PA, Taccioli GE, Jackson SP . (1995). Menage a trois: double strand break repair, V(D)J recombination and DNA- PK. Bioessays 17: 949–957.

    Article  CAS  Google Scholar 

  • Johnson RD, Jasin M . (2000). Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19: 3398–3407.

    Article  CAS  Google Scholar 

  • Jung D, Alt FW . (2004). Unraveling V(D)J recombination; insights into gene regulation. Cell 116: 299–311.

    Article  CAS  Google Scholar 

  • Kadyk LC, Hartwell LH . (1992). Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132: 387–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Krasieva TB, Kurumizaka H, Chen DJ, Taylor AM, Yokomori K . (2005). Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. J Cell Biol 170: 341–347.

    Article  CAS  Google Scholar 

  • Kleckner N . (1996). Meiosis: how could it work? Proc Natl Acad Sci USA 93: 8167–8174.

    Article  CAS  Google Scholar 

  • Kraus E, Leung WY, Haber JE . (2001). Break-induced replication: a review and an example in budding yeast. Proc Natl Acad Sci USA 98: 8255–8262.

    Article  CAS  Google Scholar 

  • Lambert S, Lopez BS . (2000). Characterization of mammalian RAD51 double strand break repair using non lethal dominant negative forms. EMBO J 19: 3090–3099.

    Article  CAS  Google Scholar 

  • Lee SE, Mitchell RA, Cheng A, Hendrickson EA . (1997). Evidence for DNA-PK-dependent and -independent DNA double-strand break repair pathways in mammalian cells as a function of the cell cycle. Mol Cell Biol 17: 1425–1433.

    Article  CAS  Google Scholar 

  • Liang F, Han M, Romanienko PJ, Jasin M . (1998). Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA 95: 5172–5177.

    Article  CAS  Google Scholar 

  • Liu N, Lamerdin JE, Tebbs RS, Schild D, Tucker JD, Shen MR et al. (1998). XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell 1: 783–793.

    Article  CAS  Google Scholar 

  • Malkova A, Naylor ML, Yamaguchi M, Ira G, Haber JE . (2005). RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol 25: 933–944.

    Article  CAS  Google Scholar 

  • Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW . (2004). Rad54 and DNA ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev 18: 1283–1292.

    Article  CAS  Google Scholar 

  • Pierce AJ, Hu P, Han M, Ellis N, Jasin M . (2001). Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev 15: 3237–3242.

    Article  CAS  Google Scholar 

  • Purandare SM, Patel PI . (1997). Recombination hot spots and human disease. Genome Res 7: 773–786.

    Article  CAS  Google Scholar 

  • Raderschall E, Golub EI, Haaf T . (1999). Nuclear foci of mammalian recombination proteins are located at single- stranded DNA regions formed after DNA damage. Proc Natl Acad Sci USA 96: 1921–1926.

    Article  CAS  Google Scholar 

  • Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W . (2002). Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12: 162–169.

    Article  CAS  Google Scholar 

  • Richardson C, Jasin M . (2000a). Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol Cell Biol 20: 9068–9075.

    Article  CAS  Google Scholar 

  • Richardson C, Jasin M . (2000b). Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405: 697–700.

    Article  CAS  Google Scholar 

  • Rodrigue A, Lafrance M, Gauthier MC, McDonald D, Hendzel M, West SC et al. (2006). Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J 25: 222–231.

    Article  CAS  Google Scholar 

  • Rothkamm K, Kruger I, Thompson LH, Lobrich M . (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23: 5706–5715.

    Article  CAS  Google Scholar 

  • Rothstein R, Michel B, Gangloff S . (2000). Replication fork pausing and recombination or ‘gimme a break’. Genes Dev 14: 1–10.

    CAS  PubMed  Google Scholar 

  • Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D et al. (2001). Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J 20: 3861–3870.

    Article  CAS  Google Scholar 

  • Saleh-Gohari N, Helleday T . (2004). Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res 32: 3683–3688.

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T . (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press: Cold Spring Harbor.

    Google Scholar 

  • Smith GC, Jackson SP . (1999). The DNA-dependent protein kinase. Genes Dev 13: 916–934.

    Article  CAS  Google Scholar 

  • Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H et al. (1998). Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17: 598–608.

    Article  CAS  Google Scholar 

  • Stamato TD, Dipatri A, Giaccia A . (1988). Cell-cycle-dependent repair of potentially lethal damage in the XR-1 gamma-ray-sensitive Chinese hamster ovary cell. Radiat Res 115: 325–333.

    Article  CAS  Google Scholar 

  • Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H et al. (1998). Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17: 5497–5508.

    Article  CAS  Google Scholar 

  • Tashiro S, Walter J, Shinohara A, Kamada N, Cremer T . (2000). Rad51 accumulation at sites of DNA damage and in postreplicative chromatin. J Cell Biol 150: 283–291.

    Article  CAS  Google Scholar 

  • Vanasse GJ, Halbrook J, Thomas S, Burgess A, Hoekstra MF, Disteche CM et al. (1999). Genetic pathway to recurrent chromosome translocations in murine lymphoma involves V(D)J recombinase. J Clin Invest 103: 1669–1675.

    Article  CAS  Google Scholar 

  • Wang H, Perrault AR, Takeda Y, Qin W, Iliakis G . (2003). Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res 31: 5377–5388.

    Article  CAS  Google Scholar 

  • Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F et al. (2005). DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 65: 4020–4030.

    Article  CAS  Google Scholar 

  • Wang H, Zeng ZC, Perrault AR, Cheng X, Qin W, Iliakis G . (2001). Genetic evidence for the involvement of DNA ligase IV in the DNA-PK-dependent pathway of non-homologous end joining in mammalian cells. Nucleic Acids Res 29: 1653–1660.

    Article  CAS  Google Scholar 

  • Yuan SS, Chang HL, Lee EY . (2003). Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM(−/−) and c-Abl(−/−) cells. Mutat Res 525: 85–92.

    Article  CAS  Google Scholar 

  • Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J et al. (2002). Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109: 811–821.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Maria Jasin for providing XR-1 cells and I-SceI expression plasmid. We also thank Drs P Bertrand, F Lebrun and D Marsh for helpful discussion and critical reading of the paper. This work was supported by La Ligue Nationale contre le Cancer ‘Equipe labellisée, La Ligue 2005’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B S Lopez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saintigny, Y., Delacôte, F., Boucher, D. et al. XRCC4 in G1 suppresses homologous recombination in S/G2, in G1 checkpoint-defective cells. Oncogene 26, 2769–2780 (2007). https://doi.org/10.1038/sj.onc.1210075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.onc.1210075

Keywords

This article is cited by

Search

Quick links