Abstract
Increase in serotonin (5-HT) transmission has profound antidepressant effects and has been associated with an increase in adult neurogenesis. The present study was aimed at screening the 5-HT receptor subtypes involved in the regulation of cell proliferation in the subgranular layer (SGL) of the dentate gyrus (DG) and the subventricular zone (SVZ) and to determine the long-term changes in adult neurogenesis. The 5-HT1A, 5-HT1B, and 5-HT2 receptor subtypes were chosen for their implication in depression and their location in/or next to these regions. Using systemic administration of various agonists and antagonists, we show that the activation of 5-HT1A heteroreceptors produces similar increases in the number of bromodeoxyuridine-labeled cells in the SGL and the SVZ (about 50% over control), whereas 5-HT2A and 5-HT2C receptor subtypes are selectively involved in the regulation of cell proliferation in each of these regions. The activation of 5-HT2C receptors, largely expressed by the choroid plexus, produces a 56% increase in the SVZ, while blockade of 5-HT2A receptors produces a 63% decrease in the number of proliferating cells in the SGL. In addition to the influence of 5-HT1B autoreceptors on 5-HT terminals in the hippocampus and ventricles, 5-HT1B heteroreceptors also regulate cell proliferation in the SGL. These data indicate that multiple receptor subtypes mediate the potent, partly selective of each neurogenic zone, stimulatory action of 5-HT on adult brain cell proliferation. Furthermore, both acute and chronic administration of selective 5-HT1A and 5-HT2C receptor agonists produce consistent increases in the number of newly formed neurons in the DG and/or olfactory bulb, underscoring the beneficial effects of 5-HT on adult neurogenesis.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS (2000). Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 20: 2896–2903.
Alvarez-Buylla A, Seri B, Doetsch F (2002). Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57: 751–758.
Banasr M, Hery M, Brezun JM, Daszuta A (2001). Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus. Eur J Neurosci 14: 1417–1424.
Barnes NM, Sharp T (1999). A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083–1152.
Benninghoff J, Mössner R, Kreutzer A, Mûller-Botz U, Schlösser R, Schmitt A et al (2002a). Evidence for serotonergic (5-HT) impact on generation of neural stem cells derived from hippocampus of adult mice. Eur Soc Neurosci Abstr 038: 5.
Benninghoff J, Schmitt A, Mossner R, Lesch KP (2002b). When cells become depressed: focus on neural stem cells in novel treatment strategies against depression. J Neural Transm 109: 947–962.
Brezun JM, Daszuta A (1999). Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 89: 999–1002.
Brezun JM, Daszuta A (2000a). Serotonergic reinnervation reverses lesion-induced decreases in PSA-NCAM labeling and proliferation of hippocampal cells in adult rats. Hippocampus 10: 37–46.
Brezun JM, Daszuta A (2000b). Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons. Eur J Neurosci 12: 391–396.
Cameron HA, McEwen BS, Gould E (1995). Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15: 4687–4692.
Clemett DA, Punhani T, Duxon MS, Blackburn TP, Fone KC (2000). Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39: 123–132.
Compan V, Dusticier N, Nieoullon A, Daszuta A (1996). Opposite changes in striatal neuropeptide Y immunoreactivity after partial and complete serotonergic depletion in the rat. Synapse 24: 87–96.
Cuevas P, Carceller F, Reimers D, Fu X, Gimenez-Gallego G (1994). Immunohistochemical localization of basic fibroblast growth factor in choroid plexus of the rat. Neurol Res 16: 310–312.
Dekeyne A, Girardon S, Millan MJ (1999). Discriminative stimulus properties of the novel serotonin (5-HT)2C receptor agonist, RO 60-0175: a pharmacological analysis. Neuropharmacology 38: 415–423.
De Vry J (1995). 5-HT1A receptor agonists: recent developments and controversial issues. Psychopharmacology (Berl) 121: 1–26.
Duman RS, Malberg J, Nakagawa S (2001). Regulation of adult neurogenesis by psychotropic drugs and stress. J Pharmacol Exp Ther 299: 401–407.
Fuchs E, Gould E (2000). Mini-review: in vivo neurogenesis in the adult brain: regulation and functional implications. Eur J Neurosci 12: 2211–2214.
Gage FH (2000). Mammalian neural stem cells. Science 287: 1433–1438.
Gardier AM, Trillat AC, Malagie I, David D, Hascoet M, Colombel MC et al (2001). 5-HT1B serotonin receptors and antidepressant effects of selective serotonin reuptake inhibitors. C R Acad Sci III 324: 433–441.
Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E (1997). Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17: 2492–2498.
Gould E, Tanapat P, Hastings NB, Shors TJ (1999). Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 3: 186–192.
Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N et al (1988). The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96: 857–881.
Jacobs BL, van Praag H, Gage FH (2000). Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5: 262–269.
Kempermann G (2002). Regulation of adult hippocampal neurogenesis—implications for novel theories of major depression. Bipolar Disord 4: 17–33.
Kempermann G, Kuhn HG, Gage FH (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature 386: 493–495.
Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T et al (1996). In vitro and in vivo profile of SB 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties. Br J Pharmacol 117: 427–434.
Kokaia Z, Lindvall O (2003). Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 13: 127–132.
Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997). Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17: 5820–5829.
Kulkarni VA, Jha S, Vaidya VA (2002). Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur J Neurosci 16: 2008–2012.
Laakso A, Palvimaki EP, Kuoppamaki M, Syvalahti E, Hietala J (1996). Chronic citalopram and fluoxetine treatments upregulate 5-HT2c receptors in the rat choroid plexus. Neuropsychopharmacology 15: 143–151.
Lee HJ, Kim JW, Yim SV, Kim MJ, Kim SA, Kim YJ et al (2001). Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats. Mol Psychiatry 6: 610 725–728.
Lorez HP, Richards JG (1982). Supra-ependymal serotoninergic nerves in mammalian brain: morphological, pharmacological and functional studies. Brain Res Bull 9: 727–741.
Malagie I, Trillat AC, Bourin M, Jacquot C, Hen R, Gardier AM (2001). 5-HT1B Autoreceptors limit the effects of selective serotonin re-uptake inhibitors in mouse hippocampus and frontal cortex. J Neurochem 76: 865–871.
Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20: 9104–9110.
Manev R, Uz T, Manev H (2001a). Fluoxetine increases the content of neurotrophic protein S100beta in the rat hippocampus. Eur J Pharmacol 420: R1–R2.
Manev H, Uz T, Smalheiser NR, Manev R (2001b). Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur J Pharmacol 411: 67–70.
Martin JR, Bos M, Jenck F, Moreau J, Mutel V, Sleight AJ et al (1998). 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. J Pharmacol Exp Ther 286: 913–924.
Martin P, Beninger RJ, Hamon M, Puech AJ (1990). Antidepressant-like action of 8-OH-DPAT, a 5-HT1A agonist, in the learned helplessness paradigm: evidence for a postsynaptic mechanism. Behav Brain Res 38: 135–144.
Maura G, Marcoli M, Tortarolo M, Andrioli GC, Raiteri M (1998). Glutamate release in human cerebral cortex and its modulation by 5-hydroxytryptamine acting at h 5-HT1D receptors. Br J Pharmacol 123: 45–50.
Middlemiss DN, Price GW, Watson JM (2002). Serotonergic targets in depression. Curr Opin Pharmacol 2: 18–22.
Mitsikostas DD, Papadopoulou-Daifotis Z, Sfikakis A, Varonos D (1996). The effect of sumatriptan on brain monoamines in rats. Headache 36: 29–31.
Moret C, Briley M (2000). The possible role of 5-HT(1B/D) receptors in psychiatric disorders and their potential as a target for therapy. Eur J Pharmacol 404: 1–12.
Morilak DA, Somogyi P, Lujan-Miras R, Ciaranello RD (1994). Neurons expressing 5-HT2 receptors in the rat brain: neurochemical identification of cell types by immunocytochemistry. Neuropsychopharmacology 11: 157–166.
Nacher J, Rosell DR, Alonso-Llosa G, McEwen BS (2001). NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM-immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci 13: 512–520.
Owens MJ, Edwards E, Nemeroff CB (1990). Effects of 5-HT1A receptor agonists on hypothalamo-pituitary–adrenal axis activity and corticotropin-releasing factor containing neurons in the rat brain. Eur J Pharmacol 190: 113–122.
Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH (1999). Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 19: 8487–8497.
Parent JM (2002). The role of seizure-induced neurogenesis in epileptogenesis and brain repair. Epilepsy Res 50: 179–189.
Pellegrino L (1979). A Stereotaxic Atlas for the Rat Brain. Plenum Press: New York.
Piguet P, Galvan M (1994). Transient and long-lasting actions of 5-HT on rat dentate gyrus neurones in vitro. J Physiol 481(Part 3): 629–639.
Radley JJ, Jacobs BL (2002). 5-HT1A receptor antagonist administration decreases cell proliferation in dentate gyrus. Brain Res 955: 264–267.
Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X et al (2000). Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol 417: 181–194.
Rochefort C, Gheusi G, Vincent JD, Lledo PM (2002). Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 22: 2679–2689.
Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301: 805–809.
Semont A, Fache M, Hery F, Faudon M, Youssouf F, Hery M (2000). Regulation of central corticosteroid receptors following short-term activation of serotonin transmission by 5-hydroxy-L-tryptophan or fluoxetine. J Neuroendocrinol 12: 736–744.
Shingo T, Gregg C, Enwere E, Fujikawa H, Hassam R, Geary C et al (2003). Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299: 117–120.
Skingle M, Beattie DT, Scopes DI, Starkey SJ, Connor HE, Feniuk W et al (1996). GR127935: a potent and selective 5-HT1D receptor antagonist. Behav Brain Res 73: 157–161.
Taupin P, Gage FH (2002). Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 69: 745–749.
Vaidya VA, Marek GJ, Aghajanian GK, Duman RS (1997). 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 17: 2785–2795.
Whitaker-Azmitia PM, Clarke C, Azmitia EC (1993). Localization of 5-HT1A receptors to astroglial cells in adult rats: implications for neuronal–glial interactions and psychoactive drug mechanism of action. Synapse 14: 201–205.
Acknowledgements
This research was supported by the Association pour la Recherche sur le Cancer (ARC) as a fellowship to M Banasr. Part of this work was presented at the Third Forum of European Neuroscience (Paris, France, 2002). RO 600175 was a generous gift from Hoffmann-La Roche.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Banasr, M., Hery, M., Printemps, R. et al. Serotonin-Induced Increases in Adult Cell Proliferation and Neurogenesis are Mediated Through Different and Common 5-HT Receptor Subtypes in the Dentate Gyrus and the Subventricular Zone. Neuropsychopharmacol 29, 450–460 (2004). https://doi.org/10.1038/sj.npp.1300320
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/sj.npp.1300320
Keywords
This article is cited by
-
D1R-5-HT2AR Uncoupling Reduces Depressive Behaviours via HDAC Signalling
Neurotherapeutics (2023)
-
Change of hypothalamic adult neurogenesis in mice by chronic treatment of fluoxetine
BMC Research Notes (2022)
-
Drugs and Endogenous Factors as Protagonists in Neurogenic Stimulation
Stem Cell Reviews and Reports (2022)
-
MDLSD: study protocol for a randomised, double-masked, placebo-controlled trial of repeated microdoses of LSD in healthy volunteers
Trials (2021)
-
Locomotion dependent neuron-glia interactions control neurogenesis and regeneration in the adult zebrafish spinal cord
Nature Communications (2021)


