Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Movement of Sugars through Plants by Cytoplasmic Pumping

Abstract

MÜNCH'S hypothesis1 for the mechanism of translocation in plants depends on a pressure gradient in sieve tubes driven by osmosis. It is supported by mass flow movements of mobile compounds2,3 in the phloem. Other hypotheses4–6 suggest that the transport mechanism requires a direct supply of energy from metabolism; they are supported by the demonstration of high levels of respiration in the phloem7, and the sensitivity of phloem transport to light8, temperature9 and metabolic inhibitors10. This apparently conflicting evidence is reconciled in hypotheses by Fensom11 and Spanner12, who independently proposed electrokinetic mechanisms which involve metabolic pumping at sieve plates and a mass flow of solution in the lumina of sieve elements. Each hypothesis implies a particular structure of the sieve element protoplast, but cytological studies are at present inconclusive because some indicate a degradation of the protoplast of sieve elements while others suggest a specialized organization of cytoplasm. In this article I wish to propose that sugars and other solutes are pumped over long distances through plants by transcellular strands of cytoplasm in sieve tubes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Münch, E., Ber. Dtsch. Bot. Ges., 44, 68 (1926).

    Google Scholar 

  2. Weatherley, P. E., Peel, A. J., and Hill, G. P., J. Exp. Bot., 10, 1 (1959).

    Article  Google Scholar 

  3. Crafts, A. S., Bot. Rev., 17, 203 (1951).

    Article  CAS  Google Scholar 

  4. Mason, T. G., and Maskell, E. J., Ann. Bot., 42, 189 (1928).

    Article  Google Scholar 

  5. De Vries, H., Bot. Ztg., 43 (1885).

  6. Kursanov, A. L., Bot. Zhur., 37, 585 (1952).

    Google Scholar 

  7. Kursanov, A. L., and Turkina, M. V., Dokl. Akad. Nauk, USSR, 85 649 (1952).

    CAS  Google Scholar 

  8. Hartt, C. E., Plant Physiol., 40, 718 (1965).

    Article  CAS  Google Scholar 

  9. Curtis, O. F., and Herty, S. D., Amer. J. Bot., 23, 528 (1936).

    Article  CAS  Google Scholar 

  10. Ullrich, W., Planta, 57, 402 (1961); 57, 713 (1962).

    Article  CAS  Google Scholar 

  11. Fensom, D. S., Canad. J. Bot., 35, 573 (1957).

    Article  Google Scholar 

  12. Spanner, D. C., J. Exp. Bot., 9, 332 (1958).

    Article  CAS  Google Scholar 

  13. Thaine, R., J. Exp. Bot., 13, 152 (1962).

    Article  Google Scholar 

  14. Thaine, R., J. Exp. Bot., 16, 192 (1965).

    Article  Google Scholar 

  15. Thaine, R., Probine, M. C., and Dyer, P. Y., J. Exp. Bot., 18, 110 (1967).

    Article  Google Scholar 

  16. Thaine, R., Nature, 192, 772 (1961).

    Article  ADS  Google Scholar 

  17. Fensom, D. S., Clattenburg, R., Chung, T., Lee, D. R., and Arnold, D. C., Nature, 219, 531 (1968).

    Article  ADS  Google Scholar 

  18. Bouck, G. B., and Cronshaw, J., J. Cell Biol., 25, 79 (1965).

    Article  Google Scholar 

  19. Kollmann, R., Planta, 55, 67 (1960): Johnson, R. P. C., ibid., 81, 314 (1968).

    Article  Google Scholar 

  20. Thaine, R., New Phytol., 64, 118 (1965).

    Article  Google Scholar 

  21. Jarosch, R., Biochim. Biophys. Acta, 25, 204 (1957).

    Article  CAS  Google Scholar 

  22. Kuroda, K., in Primitive Motile Systems in Cell Biology, p. 31 (Academic Press, London, 1964).

    Book  Google Scholar 

  23. Kamitsubo, E., Proc. Jap. Acad., 42, 507 (1966).

    Article  Google Scholar 

  24. Hepton, C. E. L., Preston, R. D., and Ripley, G. W., Nature, 176, 868 (1955).

    Article  ADS  Google Scholar 

  25. Behnke, H. D., and Dörr, I., Planta, 74, 18 (1967).

    Article  CAS  Google Scholar 

  26. Esau, K., and Cheadle, V. I., Proc. US Nat. Acad. Sci., 47, 1716 (1961).

    Article  ADS  CAS  Google Scholar 

  27. Cronshaw, J., and Esau, K., J. Cell. Biol., 34, 801 (1967).

    Article  CAS  Google Scholar 

  28. Evert, R. F., and Murmanis, L., Amer. J. Bot., 52, 95 (1965).

    Article  Google Scholar 

  29. Kollmann, R., and Schumacher, W., Planta, 58, 366 (1962); ibid., 59, 195 (1962); ibid., 60, 360 (1963).

    Article  Google Scholar 

  30. Wark, M. C., and Chambers, T. C., J. Austral. Bot., 13, 171 (1965).

    Article  Google Scholar 

  31. Northcote, D. H., and Wooding, F. B., Proc. Roy. Soc., 163, 524 (1966).

    Article  ADS  Google Scholar 

  32. Esau, K., and Cronshaw, J., J. Ultrastr. Res., 23, 1 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

THAINE, R. Movement of Sugars through Plants by Cytoplasmic Pumping. Nature 222, 873–875 (1969). https://doi.org/10.1038/222873a0

Download citation

  • Received:

  • Revised:

  • Issue date:

  • DOI: https://doi.org/10.1038/222873a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing