Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxygen in the Palaeoaquatic environment

Abstract

A LARGE number of theories attempt to explain the ‘apparently’ very late and sudden diversification of life at the end of the Precambrian era either in terms of environmental changes (such as ocean chemistry1, global temperature2, and oxygen and ozone levels3,4) or the time lag necessary for biological evolution5. It seems clear that no single mechanism can be solely responsible for this sudden leap forward in evolution; the origin of multicellular life was almost certainly in response to several forcing mechanisms. The model we present here does not attempt to resolve which parameter was the most important, but seeks to emphasise the vital role of adequate oxygen levels in the early marine environment which must be considered as a further vital condition for life diversification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fyfe, W. S. Nature 267, 510 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Hoyle, F. Q. J. R. astr. Soc. 13, 328 (1972).

    ADS  Google Scholar 

  3. Nursall, J. R. Nature 183, 1170 (1969).

    Article  ADS  Google Scholar 

  4. Berkner, L. V. & Marshall, L. C. in The Origin and Evolution of Oceans and Atmospheres 102 (Wiley, New York, 1964); Adv. Geophys. 12, 309 (1967); J. atmos. Sci. 22, 225 (1965); J. atmos. Sci. 23, 133 (1966).

    Google Scholar 

  5. Margulis, L., Walker, J. C. G. & Rambler, M. Nature 264, 620 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Weyl, P. K. Science 161, 158 (1968).

    Article  ADS  CAS  Google Scholar 

  7. Chamberlain, W. M. & Marland, G. Nature 265, 135 (1977).

    Article  ADS  Google Scholar 

  8. Stefan, H. & Ford, D. E. Proc. ASCE, J. Hydr. Div. 101, 97 (1975).

    Google Scholar 

  9. Huber, W. C., Harleman, D. R. F. & Ryan, P. J. Procs. ACSE, J. Hyd. Div. 98, 645 (1972).

    Google Scholar 

  10. Talling, J. F. Verh. Int. Ver. Theor. Angew. Limnol. 17, 998 (1969).

    Google Scholar 

  11. Golterman, H. L. Physical Limnology (Elsevier, Amsterdam, 1975).

    Google Scholar 

  12. Pollard, R. T., Rhines, P. B. & Thompson, R. O. R. Y. Geophvs. Fluid Dynam. 3, 381 (1973).

    Google Scholar 

  13. Denman, K. L. J. phys. Oceanogr. 3, 173 (1973).

    Article  ADS  Google Scholar 

  14. Henderson-Sellers, B. Marine Sciences Directorate, Fisheries and Environment Canada 379, (Manuscript Report Series No. 43, 1977).

    Google Scholar 

  15. Christensen-Dalsgaard, J. & Gough, D. O. Nature 259, 89 (1976).

    Article  ADS  Google Scholar 

  16. Haselgrove, C. B. & Hoyle, F. Mon. Not. R. astr. Soc. 119, 112 (1959).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HENDERSON-SELLERS, B., HENDERSON-SELLERS, A. Oxygen in the Palaeoaquatic environment. Nature 272, 439–440 (1978). https://doi.org/10.1038/272439a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/272439a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing