Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Density-driven interstitial water motion in sediments

Abstract

Sediment depth distributions and fluxes of dissolved chemical substances have been interpreted as being a result of reaction, diffusion, bioturbation and irrigation1,2. However, several studies suggest that density-driven convection3 can alter the depth distribution and increase the fluxes of dissolved substances when density decreases below the sediment surface4–7. We present here temperature–time series measurements for a freshwater lake undergoing autumn cooling. These are the first in situ observations of heat transport due to motion of interstitial waters over periods of less than 1 hour. Density, calculated from temperature, decreases with depth at the time and place that this motion occurs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berner, R. A. Principles of Chemical Sedimentology (Princeton University Press, 1971).

    Google Scholar 

  2. Berner, R. S. Early Diagenesis. A Theoretical Approach (Princeton University Press, 1980).

    Google Scholar 

  3. Combarnous, M. A. & Bories, S. A. Adv. Hydrosci. 10, 232–309 (1974).

    Google Scholar 

  4. Hesslein, R. H. Can. J. Fish. aquat. Sci. 37, 545–551 (1980).

    Article  Google Scholar 

  5. Thorstensen, D. C. & Mackenzie, F. T. Geochim. cosmochim. Acta 28, 1–19 (1974).

    Article  ADS  Google Scholar 

  6. Harrison, W. D. & Osterkamp, T. E. J. geophys. Res. 83, 4707–4712 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Smetacek, V. F., von Bedungen, F., von Brockel, K. & Zeitzschel, B. Mar. Biol. 34, 373–378 (1976).

    Article  Google Scholar 

  8. Brunskill, G. J., Povoledo, D., Graham, B. W. & Stainton, M. P. J. Fish. Res. Bd Can. 28, 277–294 (1971).

    Article  CAS  Google Scholar 

  9. Kell, G. S. J. Chem. Engng Data 12, 66–69 (1967).

    Article  CAS  Google Scholar 

  10. Quay, P. D. thesis, Columbia Univ. (1977).

  11. Ray-shing Wu, Cheng, K. C. & Craggs, A. Numerical Heat Transfer 2, 303–318 (1979).

    Google Scholar 

  12. Chhuon, B. & Caltigorone, J. P. J. Heat Transfer 101, 244–248 (1979).

    Article  Google Scholar 

  13. Green, T. & Freehill, R. L. J. appl. Phys. 40, 1759–1762 (1969).

    Article  ADS  Google Scholar 

  14. Wooding, R. A. Proc. 2nd Workshop Geotherm Reservoir Engng, 339–345 (Stanford University Press, 1976).

    Google Scholar 

  15. Nield, D. A. Wat. Resour. Res. 4, 553–560 (1968).

    Article  ADS  Google Scholar 

  16. Elder, J. W. J. Fluid Mech. 32, 69–96 (1968).

    Article  ADS  Google Scholar 

  17. Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids 2nd edn (Oxford University Press, 1959).

    MATH  Google Scholar 

  18. Horne, R. N. & O'Sullivan, M. J. J. Fluid Mech. 66, 339–352 (1974).

    Article  ADS  Google Scholar 

  19. Townsend, A. A. Q. Jl R. met. Soc. 90, 248–259 (1964).

    Article  ADS  Google Scholar 

  20. Townsend, A. A., J. Fluid Mech. 24, 307–319 (1966).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musgrave, D., Reeburgh, W. Density-driven interstitial water motion in sediments. Nature 299, 331–334 (1982). https://doi.org/10.1038/299331a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/299331a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing