Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impaired nuclear transport of a human variant tRNAiMet

Abstract

Recently, a human variant tRNAiMet (initiator tRNAMet) gene has been cloned from a recombinant library of fetal liver DNA1. This gene contains a G to T transversion within the highly conserved TCGA sequence in loop 4 (‘Tψ loop’), a sequence position occupied exclusively by a purine (usually G) in almost 200 prokaryotic and eukaryotic tRNAs2. Recent studies with the cloned gene, both in vitro3 and when expressed in an intact cell on a simian virus 40 viral vector4, have shown that one functional consequence of this base substitution is a reduction in the rate of processing of the primary transcript of the gene. This reaction involves sequential excision of 5′- and 3′-terminal sequences3. Here we show that following microinjection of the variant tRNAiMet gene into the germinal vesicle of the intact Xenopus laevis oocyte, the primary transcript is slowly but accurately processed to a mature variant tRNAiMet species which remains trapped within the oocyte nucleus, its escape apparently being prevented by the nuclear membrane. This is the first evidence that the transport of a tRNA molecule can be blocked by a point mutation. The results suggest that a selective tRNA nuclear transport mechanism exists in the eukaryotic cell and identify a critical role for the highly conserved Tψ loop in this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Santos, T. & Zasloff, M. Cell 23, 699–709 (1981).

    Article  CAS  Google Scholar 

  2. Sprinzl, M. & Gauss, D. M. Nucleic Acids Res. 10, r1–r55 (1982).

    Article  CAS  Google Scholar 

  3. Zasloff, M., Santos, T., Romeo, P. & Rosenberg, M. J. biol. Chem. 257, 7857–7863 (1982).

    CAS  PubMed  Google Scholar 

  4. Zasloff, M., Santos, T. & Hamer, D. H. Nature 295, 533–535 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Kressmann, A., Clarkson, S. G., Telford, J. L. & Birnsteil, M. L. Cold Spring Harb. Symp. quant. Biol. 42, 1077–1082 (1977).

    Article  Google Scholar 

  6. DeRobertis, E. M. & Olson, M. V. Nature 278, 137–143 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Cortese, R., Melton, D., Tranquilla, T. & Smith, J. D. Nucleic Acids Res. 5, 4593–4611 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Melton, D. & Cortese, R. Cell 18, 1165–1172 (1979).

    Article  CAS  Google Scholar 

  9. Melton, D., DeRobertis, E. M. & Cortese, R. Nature 284, 143–148 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Lonn, U. J. molec. Biol. 112, 661–666 (1977).

    Article  CAS  Google Scholar 

  11. DeRobertis, E. M., Lienhard, S. & Parisot, R. Nature 295, 572–577 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Barrel, B. G. in Procedures in Nucleic Acid Research Vol. 2 (eds Cantoni, G. L. & Davis, D. R.) 751–799 (Harper & Row, New York, 1971).

    Google Scholar 

  13. DeRobertis, E. M., Black, P. & Nishikura, K. Cell 23, 89–93 (1981).

    Article  CAS  Google Scholar 

  14. Kirschner, R. H., Rusli, M. & Martin, T. E. J. Cell Biol. 72, 118–132 (1977).

    Article  CAS  Google Scholar 

  15. Picard, B. & Wegnez, M. Proc. natn. Acad. Sci. U.S.A. 76, 241–245 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Pelham, H. R. B. & Brown, D. D. Proc. natn. Acad. Sci. U.S.A. 77, 4170–4174 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Gruissen, W. & Seifart, K. H. J. biol. Chem. 257, 1468–1472 (1982).

    Google Scholar 

  18. Zasloff, M., Ginder, G. & Felsenfeld, G. Nucleic Acids Res. 5, 1139–1151 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zasloff, M., Rosenberg, M. & Santos, T. Impaired nuclear transport of a human variant tRNAiMet. Nature 300, 81–84 (1982). https://doi.org/10.1038/300081a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/300081a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing