Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxygen uptake occurs faster than sodium pumping in bee retina after a light flash

Abstract

When neurones are active there is an entry of Na+, which must subsequently be pumped out, and an increase in their oxygen consumption rate ( Q O 2 ). The Na+ pump derives its energy from ATP, splitting it into ADP and Pi, and it has reasonably been proposed that the changes in concentrations of ATP, ADP and Pi lead to a stimulation of the O2 consumption by the mitochondria and hence to a restoration of the stock of ATP1–3. Here we present evidence suggesting that Q O 2 must be controlled differently in the retinal photoreceptor cells of the honeybee drone. Stimulation of drone photoreceptors with a flash of light causes an entry of Na+ (ref. 4) and a transient increase in Q o 2 that indicates respiration of the right order of magnitude to provide ATP to pump the Na+ out5. We report intracellular recordings of changes in intracellular sodium (Nai+) and potassium (Ki+) in response to single light flashes and have compared the time course of extra oxygen consumption (Δ Q O 2 ) with these ion changes and other indices of Na+ pumping. We found that the time course of pumping seems to lag behind the time course of Δ Q O 2 . It follows that the mitochondrial respiration must be stimulated by some signal which is generated earlier than the rise in ADP produced by the Na+ pump.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chance, B. & Williams, G. R. J. biol. Chem. 217, 409–427 (1955).

    CAS  PubMed  Google Scholar 

  2. Ritchie, J. M. Prog. Biophys. molec. Biol. 26, 147–187 (1973).

    Article  CAS  Google Scholar 

  3. Erecinska, M., Stubbs, M., Miyata, Y., Ditre, C. M. & Wilson, D. F. Biochim. biophys. Acta 462, 20–35 (1977).

    Article  CAS  PubMed  Google Scholar 

  4. Fulpius, B. & Baumann, F. J. gen. Physiol. 53, 541–561 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsacopoulos, M. & Poitry, S. J. gen. Physiol. 80, 19–55 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Coles, J. A. & Orkand, R. K. J. Physiol., Lond. (in the press).

  7. Naka, K. & Eguchi, E. J. gen. Physiol. 45, 663–680 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baumann, F. J. gen. Physiol. 52, 855–875 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coles, J. A. & Tsacopoulos, M. J. Physiol., Lond. 270, 13P–14P (1977).

    Google Scholar 

  10. Coles, J. A. & Tsacopoulos, M. J. Physiol., Lond. 290, 525–549 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coles, J. A. & Orkand, R. K. J. Physiol., Lond. 332, 16P–17P (1982).

    Google Scholar 

  12. Tsacopoulos, M. & Lehmenkühler, A. Experientia 33, 1337–1338 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. Coles, J. A. & Tsacopoulos, M. J. exp. Biol. 95, 75–92 (1981).

    CAS  PubMed  Google Scholar 

  14. Tsacopoulos, M., Poitry, S. & Borsellino, A. J. gen. Physiol. 77, 601–628 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Perrelet, A. Z. Zellforsch. mikrosk. Anat. 108, 530–562 (1970).

    Article  CAS  PubMed  Google Scholar 

  16. Stryer, L. in Biochemistry 344 Freeman, San Francisco, (1975).

    Google Scholar 

  17. Mahler, M. J. gen. Physiol. 71, 559–580 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. Carreras, J. thesis, Geneva Univ. (1978).

  19. Brown, J. E. & Lisman, J. E. J. gen. Physiol. 59, 720–733 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koike, H., Brown, H. M. & Hagiwara, S. J. gen. Physiol. 57, 723–737 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edgington, D. R. & Stuart, A. E. J. gen. Physiol. 77, 629–646 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Heinemann, U. & Lux, H. D. Brain Res. 93, 63–76 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. Kriz, N., Sykova, E. & Vyklicky, L. J. Physiol., Lond. 249, 167–182 (1975).

    Article  CAS  Google Scholar 

  24. Brown, J. E. & Blinks, J. R. J. gen. Physiol. 64, 643–665 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bader, C. R., Baumann, F. & Bertrand, D. J. gen. Physiol. 67, 475–491 (1976).

    Article  CAS  PubMed  Google Scholar 

  26. Levy, S. & Fein, A. Invest. Ophthal. Suppl. 22, 80 (1982).

    Google Scholar 

  27. Akerman, K. E. O. & Nicholls, D. G. Rev. Physiol. Biochem. Pharmac. 95, 149–201 (1982).

    Article  Google Scholar 

  28. Denton, R. M. & McCormack, J. G. Clin. Sci. 61, 135–140 (1981).

    Article  CAS  Google Scholar 

  29. McCormack, J. G. & Denton, R. M. Biochem. J. 196, 619–624 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Landowne, D. & Ritchie, J. M. J. Physiol., Lond. 212, 503–517 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Evêquoz, V., Stadelmann, A. & Tsacopoulos, M. J. comp. Physiol. (in the press).

  32. Kuffler, S. W. Proc. R. Soc. B168, 1–21 (1967).

    CAS  ADS  Google Scholar 

  33. Salem, R. D., Hammerschlag, R., Bracho, H. & Orkand, R. K. Brain Res. 86, 499–503 (1975).

    Article  CAS  PubMed  Google Scholar 

  34. Pentreath, V. W. & Kai-Kai, M. A. Nature 295, 59–61 (1982).

    Article  CAS  ADS  PubMed  Google Scholar 

  35. Steiner, R. A., Oehme, M., Ammann, D. & Simon, W. Analyt. Chem. 51, 351–353 (1979).

    Article  CAS  Google Scholar 

  36. Baumann, F. & Hadjilazaro, B. Vision Res. 12, 17–31 (1972).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsacopoulos, M., Orkand, R., Coles, J. et al. Oxygen uptake occurs faster than sodium pumping in bee retina after a light flash. Nature 301, 604–606 (1983). https://doi.org/10.1038/301604a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/301604a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing