Abstract
When neurones are active there is an entry of Na+, which must subsequently be pumped out, and an increase in their oxygen consumption rate (). The Na+ pump derives its energy from ATP, splitting it into ADP and Pi, and it has reasonably been proposed that the changes in concentrations of ATP, ADP and Pi lead to a stimulation of the O2 consumption by the mitochondria and hence to a restoration of the stock of ATP1–3. Here we present evidence suggesting that must be controlled differently in the retinal photoreceptor cells of the honeybee drone. Stimulation of drone photoreceptors with a flash of light causes an entry of Na+ (ref. 4) and a transient increase in that indicates respiration of the right order of magnitude to provide ATP to pump the Na+ out5. We report intracellular recordings of changes in intracellular sodium (Nai+) and potassium (Ki+) in response to single light flashes and have compared the time course of extra oxygen consumption (Δ) with these ion changes and other indices of Na+ pumping. We found that the time course of pumping seems to lag behind the time course of Δ. It follows that the mitochondrial respiration must be stimulated by some signal which is generated earlier than the rise in ADP produced by the Na+ pump.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Chance, B. & Williams, G. R. J. biol. Chem. 217, 409–427 (1955).
Ritchie, J. M. Prog. Biophys. molec. Biol. 26, 147–187 (1973).
Erecinska, M., Stubbs, M., Miyata, Y., Ditre, C. M. & Wilson, D. F. Biochim. biophys. Acta 462, 20–35 (1977).
Fulpius, B. & Baumann, F. J. gen. Physiol. 53, 541–561 (1969).
Tsacopoulos, M. & Poitry, S. J. gen. Physiol. 80, 19–55 (1982).
Coles, J. A. & Orkand, R. K. J. Physiol., Lond. (in the press).
Naka, K. & Eguchi, E. J. gen. Physiol. 45, 663–680 (1962).
Baumann, F. J. gen. Physiol. 52, 855–875 (1968).
Coles, J. A. & Tsacopoulos, M. J. Physiol., Lond. 270, 13P–14P (1977).
Coles, J. A. & Tsacopoulos, M. J. Physiol., Lond. 290, 525–549 (1979).
Coles, J. A. & Orkand, R. K. J. Physiol., Lond. 332, 16P–17P (1982).
Tsacopoulos, M. & Lehmenkühler, A. Experientia 33, 1337–1338 (1977).
Coles, J. A. & Tsacopoulos, M. J. exp. Biol. 95, 75–92 (1981).
Tsacopoulos, M., Poitry, S. & Borsellino, A. J. gen. Physiol. 77, 601–628 (1981).
Perrelet, A. Z. Zellforsch. mikrosk. Anat. 108, 530–562 (1970).
Stryer, L. in Biochemistry 344 Freeman, San Francisco, (1975).
Mahler, M. J. gen. Physiol. 71, 559–580 (1978).
Carreras, J. thesis, Geneva Univ. (1978).
Brown, J. E. & Lisman, J. E. J. gen. Physiol. 59, 720–733 (1972).
Koike, H., Brown, H. M. & Hagiwara, S. J. gen. Physiol. 57, 723–737 (1971).
Edgington, D. R. & Stuart, A. E. J. gen. Physiol. 77, 629–646 (1981).
Heinemann, U. & Lux, H. D. Brain Res. 93, 63–76 (1975).
Kriz, N., Sykova, E. & Vyklicky, L. J. Physiol., Lond. 249, 167–182 (1975).
Brown, J. E. & Blinks, J. R. J. gen. Physiol. 64, 643–665 (1974).
Bader, C. R., Baumann, F. & Bertrand, D. J. gen. Physiol. 67, 475–491 (1976).
Levy, S. & Fein, A. Invest. Ophthal. Suppl. 22, 80 (1982).
Akerman, K. E. O. & Nicholls, D. G. Rev. Physiol. Biochem. Pharmac. 95, 149–201 (1982).
Denton, R. M. & McCormack, J. G. Clin. Sci. 61, 135–140 (1981).
McCormack, J. G. & Denton, R. M. Biochem. J. 196, 619–624 (1981).
Landowne, D. & Ritchie, J. M. J. Physiol., Lond. 212, 503–517 (1971).
Evêquoz, V., Stadelmann, A. & Tsacopoulos, M. J. comp. Physiol. (in the press).
Kuffler, S. W. Proc. R. Soc. B168, 1–21 (1967).
Salem, R. D., Hammerschlag, R., Bracho, H. & Orkand, R. K. Brain Res. 86, 499–503 (1975).
Pentreath, V. W. & Kai-Kai, M. A. Nature 295, 59–61 (1982).
Steiner, R. A., Oehme, M., Ammann, D. & Simon, W. Analyt. Chem. 51, 351–353 (1979).
Baumann, F. & Hadjilazaro, B. Vision Res. 12, 17–31 (1972).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Tsacopoulos, M., Orkand, R., Coles, J. et al. Oxygen uptake occurs faster than sodium pumping in bee retina after a light flash. Nature 301, 604–606 (1983). https://doi.org/10.1038/301604a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/301604a0
This article is cited by
-
Changes in redox states of respiratory pigments recorded from the eyes of live blowflies exposed to light stimuli and hypoxia
Journal of Comparative Physiology A (2011)
-
Light dependence of oxygen consumption by blowfly eyes recorded with a magnetic diver balance
Journal of Comparative Physiology A (2005)
-
Iodoacetate inhibits the biosynthesis of alanine in glial cells and its utilization in photoreceptors of the honeybee drone (Apis mellifera) retina
Journal of Comparative Physiology B (1995)
-
Immunolocalization of Na,K-ATPase in blowfly photoreceptor cells
Cell & Tissue Research (1994)
-
Dual role for extracellular calcium in blowfly phototransduction
Journal of Comparative Physiology A (1993)


