Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Therapeutic potential of monovalent monoclonal antibodies

Abstract

One therapeutic use for monoclonal antibody technology1 is the elimination of categories of unwanted cells by virtue of their distinct cell surface antigens. The efficiency of cell destruction by complement lysis or opsonization depends on a number of factors such as antibody specificity and isotype as well as certain properties of the target antigen2. In some instances cells can escape destruction by redistributing and eventually losing the antigen–antibody complexes from their surface3,4. This process, known as antigenic modulation, generally depends on bivalent antibody binding. Starting from the observation that rabbit antisera can be made more effective at killing tumour cells if they are first rendered univalent by limited proteolysis, we have now prepared a number of monovalent rat monoclonal antibodies to human cell-surface antigens. We find that these antibodies are no longer able to bring about modulation of their target antigens and have an enhanced facility for lysis with human complement. These special properties should greatly increase the therapeutic potential of monoclonal antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kohler, G. & Milstein, C. Nature 256, 495–497 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Cobbold, S.P., Thierfelder, S. & Waldmann, H. Molecular Biology and Medicine 1, 285–304 (1984).

    Google Scholar 

  3. Glennie, M. J. & Stevenson, G. T. Nature 295, 712–714 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Boyse, E. A. & Old, L. J. A. Rev. Genet. 3, 269–291 (1969).

    Article  Google Scholar 

  5. Galfre, G., Milstein, C. & Wright, B. Nature 277, 131–133 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Hoang, T. et al. Blood 61, 580–588 (1982).

    Google Scholar 

  7. Cobbold, S. P. thesis, Cambridge Univ. (1983).

  8. Fust, G., Medgyesi, G. A., Bazin, H. & Gergely, J. Immun. Lett. 1, 249–253 (1980).

    Article  Google Scholar 

  9. Hughes-Jones, N. C., Gorrick, B. D. & Howard, J. C. Eur. J. Immun. 13, 635–641 (1983).

    Article  CAS  Google Scholar 

  10. Prentice, H. G. et al. Lancet i, 700–703 (1982).

    Article  Google Scholar 

  11. Granger, S. et al. Br. J. Haemat. 50, 367–374 (1982).

    Article  CAS  Google Scholar 

  12. Ritz, J. & Schlossman, S. F. Blood 59, 1–11 (1982).

    CAS  PubMed  Google Scholar 

  13. Ritz, J., Pesando, J. M., Notis-McConarty, J., & Schlossman, S. F. J. Immun. 125, 1506–1514 (1980).

    CAS  PubMed  Google Scholar 

  14. Hughes-Jones, N. C. & Ghosh, S. FEBS Lett. 128, 318–320 (1981).

    Article  CAS  Google Scholar 

  15. Hale, G. et al. Blood 62, 873–882 (1983).

    CAS  PubMed  Google Scholar 

  16. Cobbold, S. P. & Waldmann, H. J. Immun. Meth. 44, 125–133 (1981).

    Article  CAS  Google Scholar 

  17. Hunt, S. V. & Fowler, M. H. Cell Tissue Kinet. 14, 445–464 (1981).

    CAS  PubMed  Google Scholar 

  18. Gutman, G. A., Bazin, H., Rokhlin, O. V. & Nezlin, R. S. Transplantn Proc. 15, 1685–1686 (1983).

    Google Scholar 

  19. Springer, T. A., Bhattacharya, A., Cardoza, J. T. & Sanehez-Madrid, F. Hybridoma 1, 257–273 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobbold, S., Waldmann, H. Therapeutic potential of monovalent monoclonal antibodies. Nature 308, 460–462 (1984). https://doi.org/10.1038/308460a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/308460a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing