Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of a gene regulatory mechanism in the evolution of echinoderms

Abstract

A rich diversity of ancient sea urchin lineages survives to the present. These include several advanced orders as well as the cidaroids, which represent the group ancestral to all other sea urchins. Here we show that all advanced groups of sea urchins examined possess in their eggs a class of maternal messenger RNA (mRNA) encoded by the evolutionary highly conserved α-subtype histone genes. The maternal histone mRNAs are unique in their time of accumulation in oogenesis, their localization in the egg nucleus and their delayed timing of translation after fertilization. Cidaroid sea urchins as well as other echinoderm classes, such as starfish and sea cucumbers, possess the genes but do not have maternal α-subtype histone mRNAs in their eggs. Thus, although all the echinoderms examined transcribe α-subtype histone genes during embryogenesis, the expression of these genes as maternal mRNAs is confined to advanced sea urchins. The fossil record allows us to pinpoint the evolution of this mode of expression of α-histone genes to the time of the splitting of advanced sea urchin lineages from the ancestral cidaroids in a radiation which occurred in a relatively brief interval of time 190–200 Myr ago. The origin of a unique gene regulatory mechanism can thus be correlated with a set of macroevolutionary events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, A. B. Palaeontology 24, 779–801 (1981).

    Google Scholar 

  2. Kier, P. M. Smithson. Contr. Paleobiol. 30, 1–89 (1977).

    Google Scholar 

  3. Childs, G., Maxson, R. & Kedes, L. H. Devl Biol. 73, 153–173 (1979).

    Article  CAS  Google Scholar 

  4. Kedes, L. H. A. Rev. Biochem. 48, 837–870 (1979).

    Article  CAS  Google Scholar 

  5. Hentschel, C. C. & Birnstiel, M. L. Cell 25, 301–313 (1981).

    Article  CAS  Google Scholar 

  6. Childs, G., Nocente-McGrath, C., Lieber, T., Holt, C. & Knowles, J. A. Cell 31, 383–393 (1982).

    Article  CAS  Google Scholar 

  7. Maxson, R., Mohun, T., Gormezano, G., Childs, G. & Kedes, L. Nature 301, 120–125 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Busslinger, M., Rusconi, S. & Birnstiel, M. L. EMBO J. l, 27–33 (1982).

    Article  Google Scholar 

  9. Perler, F. et al. Cell 20, 555–566 (1980).

    Article  CAS  Google Scholar 

  10. Hough-Evans, B. R., Ernst, S. G., Britten, R. J. & Davidson, E. H. Devl Biol. 69, 258–269 (1979).

    Article  CAS  Google Scholar 

  11. Hough-Evans, B. R., Wold, B. J., Ernst, S. G., Britten, R. J. & Davidson, E. H. Devl Biol. 60, 258–277 (1977).

    Article  CAS  Google Scholar 

  12. Raff, R. A., Brandis, J. W., Huffman, C. J., Koch, A. L. & Leister, D. E. Devl Biol. 86, 265–271 (1981).

    Article  CAS  Google Scholar 

  13. Wells, D. E., Showman, R. M., Klein, W. H. & Raff, R. A. Nature 292, 477–478 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Showman, R. M., Wells, D. E., Anstrom, J., Hursh, D. A. & Raff, R.A. Proc. natn. Acad. Sci. U.S.A. 79, 5944–5947 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Venezky, D. L., Angerer, L. M. & Angerer, R. C. Cell 24, 385–391 (1981).

    Article  CAS  Google Scholar 

  16. Raff, R. A. in Time, Space, and Pattern in Embryonic Development (eds Jeffery, W. R. & Raff, R. A.) (Liss, New York, 1983).

    Google Scholar 

  17. DeLeon, D. V., Hughes, K. J., Angerer, L. M. & Angerer, R. C. Devl Biol. 100, 197–206 (1983).

    Article  CAS  Google Scholar 

  18. Angerer, L. M. et al. Devl Biol. 102, 477–484 (1984).

    Article  Google Scholar 

  19. Showman, R. M. et al. in Molecular Aspects of Early Development (eds Malacinski, G. M. & Klein, W. H.) (Plenum, New York, 1984).

    Google Scholar 

  20. Mauron, A., Kedes, L., Hough-Evans, B. R. & Davidson, E. H. Devl Biol. 94, 425–434 (1982).

    Article  CAS  Google Scholar 

  21. Maxson, R. E. Jr & Wilt, F. H. Devl Biol. 94, 435–440 (1982).

    Article  CAS  Google Scholar 

  22. Paul, C. R. C. in Patterns of Evolution (ed. Hallam, A.) (Elsevier, Amsterdam, 1977).

    Google Scholar 

  23. Ohama, T., Hori, H. & Osawa, S. Nucleic Acids Res. 11, 5181–5184 (1983).

    Article  CAS  Google Scholar 

  24. Raff, R. A. & Kaufman, T. C. Embryos, Genes, and Evolution (Macmillan, New York, 1983).

    Google Scholar 

  25. Schroeder, T. E. Biol. Bull. 161, 141–151 (1981).

    Article  Google Scholar 

  26. Bruskin, A. M., Tyner, A. L., Wells, D. E., Showman, R. M. & Klein, W. H. Devl Biol. 87, 308–318 (1981).

    Article  CAS  Google Scholar 

  27. Sures, I., Lowry, J. & Kedes, L. H. Cell 15, 1033–1044 (1978).

    Article  CAS  Google Scholar 

  28. Overton, G. C. & Weinberg, E. S. Cell 14, 247 – 257 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raff, R., Anstrom, J., Huffman, C. et al. Origin of a gene regulatory mechanism in the evolution of echinoderms. Nature 310, 312–314 (1984). https://doi.org/10.1038/310312a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/310312a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing