Abstract
A rich diversity of ancient sea urchin lineages survives to the present. These include several advanced orders as well as the cidaroids, which represent the group ancestral to all other sea urchins. Here we show that all advanced groups of sea urchins examined possess in their eggs a class of maternal messenger RNA (mRNA) encoded by the evolutionary highly conserved α-subtype histone genes. The maternal histone mRNAs are unique in their time of accumulation in oogenesis, their localization in the egg nucleus and their delayed timing of translation after fertilization. Cidaroid sea urchins as well as other echinoderm classes, such as starfish and sea cucumbers, possess the genes but do not have maternal α-subtype histone mRNAs in their eggs. Thus, although all the echinoderms examined transcribe α-subtype histone genes during embryogenesis, the expression of these genes as maternal mRNAs is confined to advanced sea urchins. The fossil record allows us to pinpoint the evolution of this mode of expression of α-histone genes to the time of the splitting of advanced sea urchin lineages from the ancestral cidaroids in a radiation which occurred in a relatively brief interval of time ∼190–200 Myr ago. The origin of a unique gene regulatory mechanism can thus be correlated with a set of macroevolutionary events.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Smith, A. B. Palaeontology 24, 779–801 (1981).
Kier, P. M. Smithson. Contr. Paleobiol. 30, 1–89 (1977).
Childs, G., Maxson, R. & Kedes, L. H. Devl Biol. 73, 153–173 (1979).
Kedes, L. H. A. Rev. Biochem. 48, 837–870 (1979).
Hentschel, C. C. & Birnstiel, M. L. Cell 25, 301–313 (1981).
Childs, G., Nocente-McGrath, C., Lieber, T., Holt, C. & Knowles, J. A. Cell 31, 383–393 (1982).
Maxson, R., Mohun, T., Gormezano, G., Childs, G. & Kedes, L. Nature 301, 120–125 (1983).
Busslinger, M., Rusconi, S. & Birnstiel, M. L. EMBO J. l, 27–33 (1982).
Perler, F. et al. Cell 20, 555–566 (1980).
Hough-Evans, B. R., Ernst, S. G., Britten, R. J. & Davidson, E. H. Devl Biol. 69, 258–269 (1979).
Hough-Evans, B. R., Wold, B. J., Ernst, S. G., Britten, R. J. & Davidson, E. H. Devl Biol. 60, 258–277 (1977).
Raff, R. A., Brandis, J. W., Huffman, C. J., Koch, A. L. & Leister, D. E. Devl Biol. 86, 265–271 (1981).
Wells, D. E., Showman, R. M., Klein, W. H. & Raff, R. A. Nature 292, 477–478 (1981).
Showman, R. M., Wells, D. E., Anstrom, J., Hursh, D. A. & Raff, R.A. Proc. natn. Acad. Sci. U.S.A. 79, 5944–5947 (1982).
Venezky, D. L., Angerer, L. M. & Angerer, R. C. Cell 24, 385–391 (1981).
Raff, R. A. in Time, Space, and Pattern in Embryonic Development (eds Jeffery, W. R. & Raff, R. A.) (Liss, New York, 1983).
DeLeon, D. V., Hughes, K. J., Angerer, L. M. & Angerer, R. C. Devl Biol. 100, 197–206 (1983).
Angerer, L. M. et al. Devl Biol. 102, 477–484 (1984).
Showman, R. M. et al. in Molecular Aspects of Early Development (eds Malacinski, G. M. & Klein, W. H.) (Plenum, New York, 1984).
Mauron, A., Kedes, L., Hough-Evans, B. R. & Davidson, E. H. Devl Biol. 94, 425–434 (1982).
Maxson, R. E. Jr & Wilt, F. H. Devl Biol. 94, 435–440 (1982).
Paul, C. R. C. in Patterns of Evolution (ed. Hallam, A.) (Elsevier, Amsterdam, 1977).
Ohama, T., Hori, H. & Osawa, S. Nucleic Acids Res. 11, 5181–5184 (1983).
Raff, R. A. & Kaufman, T. C. Embryos, Genes, and Evolution (Macmillan, New York, 1983).
Schroeder, T. E. Biol. Bull. 161, 141–151 (1981).
Bruskin, A. M., Tyner, A. L., Wells, D. E., Showman, R. M. & Klein, W. H. Devl Biol. 87, 308–318 (1981).
Sures, I., Lowry, J. & Kedes, L. H. Cell 15, 1033–1044 (1978).
Overton, G. C. & Weinberg, E. S. Cell 14, 247 – 257 (1978).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Raff, R., Anstrom, J., Huffman, C. et al. Origin of a gene regulatory mechanism in the evolution of echinoderms. Nature 310, 312–314 (1984). https://doi.org/10.1038/310312a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/310312a0
This article is cited by
-
Histone genes in three sea star species: Cluster arrangement, transcriptional polarity, and analyses of the flanking regions of H3 and H4 genes
Journal of Molecular Evolution (1988)
-
Synonymous nucleotide substitution rates of β-tubulin and histone genes conform to high overall genomic rates in rodents but not in sea urchins
Journal of Molecular Evolution (1988)
-
Organization and unusual expression of histone genes in the sea starPisaster ochraceus
Journal of Molecular Evolution (1987)
-
Maternal stores of α subtype histone mRNAs are not required for normal early development of sea urchin embryos
Roux’s Archives of Developmental Biology (1986)


