Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adenosine mediates a slow hyperpolarizing synaptic potential in autonomic neurones

Abstract

Considerable evidence has accumulated suggesting that purines, adenosine and ATP function as neurotransmitters in the central and peripheral nervous systems1–4. Burnstock2 has proposed that purinergic receptors be classified into two types, P1 and P2, having adenosine and ATP, respectively, as agonist prototypes. Recent data suggest that ATP may mediate a synaptic potential in guinea pig vas deferons5,6, but no such evidence exists for adenosine. The presence of a non-cholinergic, non-adrenergic nerve supply to the urinary bladder has been postulated7,8 and termed purinergic1,2, as these nerves have been shown to release ATP7. Furthermore, atropine-resistant contractions of bladder smooth muscle are thought to be mediated by ATP, while in situ experiments9,10 in vesical parasympathetic ganglia have suggested that a purinergic modulatory mechanism may control urinary bladder function. We now report the presence of a slow hyperpolarizing synaptic potential (slow-h.s.p.) in neurones of cat vesical parasympathetic ganglia, produced by stimulating the preganglionic nerves, and provide evidence that the slow-h.s.p. is mediated by adenosine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burnstock, G. J. Physiol. Lond. 313, 1–35 (1981).

    Article  CAS  Google Scholar 

  2. Burnstock, G. Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (eds Smith, R. W. & Bolis, L.) 107–118 (Raven, New York, 1978).

    Google Scholar 

  3. Stone, T. W. Neuroscience 6, 523–555 (1981).

    Article  CAS  Google Scholar 

  4. Phillis, J. W. & Wu, P. H. Prog. Neurobiol. 16, 187–239 (1981).

    Article  CAS  Google Scholar 

  5. Sneddon, P. and Westfall, D. P. & Fedan, J. S. Science 218, 693–695 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Sneddon, P. & Westfall, D. P. J. Physiol., Lond. 347, 561–580 (1984).

    Article  CAS  Google Scholar 

  7. Burnstock, G., Cocks, T., Kasakov, L. & Wong, H. K. Eur. J. Pharmac. 49, 145–149 (1978).

    Article  CAS  Google Scholar 

  8. Burnstock, G., Cocks, T., Crowe, R. & Kasakov, L. Br. J. Pharmac. 63, 125–138 (1978).

    Article  CAS  Google Scholar 

  9. DeGroat, W. C. & Booth, A. M. Fedn. Proc. 39, 2990–2996 (1980).

    CAS  Google Scholar 

  10. DeGroat, W. C., Booth, A. M. & Krier, J. in Integrative Functions of the Autonomic Nervous Systems (eds Brooks, C. M., Koizumi, K. & Sato, A.) 234–247 (University of Tokyo Press, 1979).

    Google Scholar 

  11. Gallagher, J. P., Griffith, W. H. & Shinnick-Gallagher, P. J. Physiol., Lond. 332, 473–486 (1982).

    Article  CAS  Google Scholar 

  12. Nimit, Y., Skolnick, P. & Daly, J. W. J. Neurochem. 36, 908–912 (1981).

    Article  CAS  Google Scholar 

  13. Hartzell, N. C. J. Physiol., Lond. 293, 23–50 (1979).

    Article  CAS  Google Scholar 

  14. Henon, B. K. & McAfee, D. A. J. Physiol., Lond. 336, 607–620 (1983).

    Article  CAS  Google Scholar 

  15. Ginsborg, B. L., House, C. R. & Silinsky, E. M. J. Physiol., Lond. 236, 723–731 (1974).

    Article  CAS  Google Scholar 

  16. Tomita, T. & Wantanabe, H. J. Physiol., Lond. 231, 167–178 (1973).

    Article  CAS  Google Scholar 

  17. Lotan, I., Dascal, N., Cohen, S. & Lass, Y. Nature 298, 572–574 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akasu, T., Shinnick-Gallagher, P. & Gallagher, J. Adenosine mediates a slow hyperpolarizing synaptic potential in autonomic neurones. Nature 311, 62–65 (1984). https://doi.org/10.1038/311062a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/311062a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing