Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Needle injection catheter delivery of the gene for an antibacterial agent inhibits neointimal formation

Abstract

Percutaneous transluminal coronary angioplasty is a routinely used non-surgical revascularization technique for patients with coronary artery disease. Up to 30% of patients undergoing coronary angioplasty develop a renarrowing of treated vessels, called restenosis. Smooth muscle cell proliferation is thought to be an important factor in restenosis; this leads to neointima formation and arterial lumen narrowing. Neointima may be reduced by the transfer of genes encoding proteins with antiproliferative effects. Cecropins are antimicrobial peptides with antiproliferative properties in mammalian cells. Cecropin A is one member of this family of peptides. In this article, a plasmid carrying the gene for the immature form, pre-pro-cecropin A, complexed with liposomes was locally delivered to perivascular tissue in a porcine arterial injury model using a needle injection catheter. Retention of the plasmid in the treated arteries was demonstrated at both 8 and 21 days following application. Transferred plasmid DNA was not detected in any other tissues analyzed. Pre-pro-cecropin A-specific transcripts could also be found in treated arteries. Balloon-injured vessels demonstrated significantly reduced neointima at 21 days in vessels treated with the pre-pro-cecropin A gene compared with neointimal area in those given a control gene (P < 0.05). the needle injection catheter appears to be useful for local intravascular gene delivery. in vivo gene transfer of cecropins may be of therapeutic relevance in restenosis prevention by limiting cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Kuntz RE, Baim DS . Defining coronary restenosis. Newer clinical and angiographic paradigms Circulation 1993 88: 1310–1323

    Article  CAS  Google Scholar 

  2. Schwartz RS, Holmes DJ, Topol EJ . The restenosis paradigm revisited: an alternative proposal for cellular mechanisms J Am Coll Cardiol 1992 20: 1284–1293

    Article  CAS  Google Scholar 

  3. Bauters C, Isner JM . The biology of restenosis Prog Cardiovasc Dis 1997 40: 107–116

    Article  CAS  Google Scholar 

  4. Ohno T et al. Gene therapy for vascular smooth muscle cell proliferation after arterial injury Science 1994 265: 781–784

    Article  CAS  Google Scholar 

  5. Nikol S, Huehns TY, Hoefling B . Molecular biology and post-angioplasty restenosis Atherosclerosis 1996 123: 17–31

    Article  CAS  Google Scholar 

  6. Nikol S . Possible uses of gene therapy in reducing coronary restenosis Heart 1997 78: 426–428

    Article  CAS  Google Scholar 

  7. Simons M et al. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo Nature 1992 359: 67–70

    Article  CAS  Google Scholar 

  8. Yang ZY et al. Role of the p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury Proc Natl Acad USA 1996 93: 7905–7910

    Article  CAS  Google Scholar 

  9. Chang MW et al. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product Science 1995 267: 518–522

    Article  CAS  Google Scholar 

  10. Chang MW et al. Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty J Clin Invest 1995 96: 2260–2268

    Article  CAS  Google Scholar 

  11. Morishita R et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo Proc Natl Acad Sci USA 1995 92: 5855–5859

    Article  CAS  Google Scholar 

  12. Boman HG . Peptide antibiotics and their role in innate immunity Ann Rev Immunol 1995 13: 16–19

    Article  Google Scholar 

  13. Hernandez VP, Gerenday A, Fallon AM . Secretion of an inducible cecropin-like activity by cultured mosquito cells Am J Trop Med Hyg 1994 50: 440–447

    Article  CAS  Google Scholar 

  14. Javadpour MM et al. De novo antimicrobial peptides with low mammalian cell toxicity J Med Chem 1996 39: 3107–3113

    Article  CAS  Google Scholar 

  15. Jaynes JM et al. In vitro cytocidal effect of lytic peptides on several transformed mammalian cell lines Pept Res 1989 2: 157–160

    CAS  PubMed  Google Scholar 

  16. Moore AJ, Devine DA, Bibby MC . Preliminary experimental anticancer activity of cecropins Pept Res 1994 7: 265–269

    CAS  PubMed  Google Scholar 

  17. Winder D, Guenzburg WH, Erfle V, Salmons B . Expression of antimicrobial peptides has an antitumour effect in human cells Biochem Biophys Res Commun 1998 242: 608–612

    Article  CAS  Google Scholar 

  18. Nakata Y, Shionoya S . Vascular lesions due to obstruction of the vasa vasorum Nature 1966 212: 1258–1259

    Article  CAS  Google Scholar 

  19. Barker SGE et al. The adventitia and atherogenesis: removal initiates intimal proliferation in the rabbit which regresses on generation of a neoadventitia Atherosclerosis 1994: 105: 131–144

  20. Huehns TY, Gonschior P, Hoefling B . Adventitia as a target for intravascular local drug delivery Heart 1996 75: 537–538

    Article  CAS  Google Scholar 

  21. Shi Y et al. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries Circulation 1996 94: 1655–1664

    Article  CAS  Google Scholar 

  22. Gonschior P, Goetz AE, Huehns TY, Hoefling B . A new catheter for prolonged local drug application Coron Art Dis 1995 6: 329–334

    Article  CAS  Google Scholar 

  23. Gonschior P et al. Comparison of local intravacular drug-delivery catheter systems Am Heart J 1995 130: 1174–1181

    Article  CAS  Google Scholar 

  24. Huehns T et al. Neointimal growth can be influenced by local adventitial gene manipulation via a needle injection catheter Atherosclerosis (in press)

  25. Innis MA, Gelfand DH . Optimization of PCRs. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) . PCR Protocols: A Guide to Methods and Applications Academic Press: San Diego 1990 84–91

    Google Scholar 

  26. Hoefling B, Huehns TY . Intravascular local drug delivery in restenosis Eur Heart J 1995 16: 437–440

    Article  Google Scholar 

  27. Wolinsky H, Thung SN . Use of the perforated balloon catheter to deliver concentrated heparin into the wall of normal canine artery J Am Coll Cardiol 1990 15: 475–481

    Article  CAS  Google Scholar 

  28. Zhu N, Liggit N, Liu Y, Debs R . Systemic gene expression after intravenous DNA delivery into adult mice Science 1993 261: 209–211

    Article  CAS  Google Scholar 

  29. Reszka R et al. Therapeutic and immunohistochemical evaluation of suicide gene transfer in a rat F98 glioblastoma model: liposomal approach versus viral delivery Proceedings of the 3rd International workshop on Gene Transfer in Hematology and Oncology, Düsseldorf, Germany 1997 (Abstr

    Google Scholar 

  30. Tahlil O et al. The Dispatch catheter as a delivery tool for arterial gene transfer Cardiovasc Res 1997 33: 181–187

    Article  CAS  Google Scholar 

  31. Nabel EG, Plautz G, Nabel GI . Site-specific gene expression in vivo by direct gene transfer into the arterial wall Science 1990 249: 1285–1288

    Article  CAS  Google Scholar 

  32. Yonemitsu Y et al. Transfer of wild-type p53 gene effectively inhibits vascular smooth muscle cell proliferation in vitro and in vivo Circ Res 1998 82: 147–156

    Article  CAS  Google Scholar 

  33. Keogh MC et al. High efficiency reporter gene transfection of vascular tissue in vitro and in vivo using cationic lipid-DNA complex Gene Ther 1997 4: 162–171

    Article  CAS  Google Scholar 

  34. Boman HG, Steiner H . Humoral immunity in Cecropia pupae Curr Top Microbiol Immunol 1981 94: 75–91

    Article  Google Scholar 

  35. Velasco M et al. Macrophage triggering with cecropin A and melittin derived peptides induces type II nitric oxide synthase expression J Immunol 1997 158: 4437–4443

    CAS  PubMed  Google Scholar 

  36. Hugosson M, Andreu D, Boman HG, Glaser E . Antibacterial peptides and mitochondrial presequences affect mitochondrial coupling, respiration and protein import Eur J Biochem 1994 223: 1027–1033

    Article  CAS  Google Scholar 

  37. Christensen B, Fink J, Merrifield RB, Mauzerall D . Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes Proc Natl Acad Sci USA 1988 85: 5072–5076

    Article  CAS  Google Scholar 

  38. Gazit E, Boman A, Boman HG, Shai Y . Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles Biochemistry 1995 34: 11479–11488

    Article  CAS  Google Scholar 

  39. Gazit E, Miller IR, Biggin PC, Sansom MSP . Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes J Mol Biol 1996 258: 860–870

    Article  CAS  Google Scholar 

  40. Price J, Turner D, Cepko C . Lineage analysis in the vertebrate nervous system by retrovirus mediated gene transfer Proc Natl Acad Sci USA 1987 84: 156–160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikol, S., Huehns, T., Krausz, E. et al. Needle injection catheter delivery of the gene for an antibacterial agent inhibits neointimal formation. Gene Ther 6, 737–748 (1999). https://doi.org/10.1038/sj.gt.3300888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.gt.3300888

Keywords

This article is cited by

Search

Quick links