Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Latency associated promoter transgene expression in the central nervous system after stereotaxic delivery of replication-defective HSV-1-based vectors

Abstract

The herpes simplex virus type 1 (HSV-1) latency associated promoter (LAP) has been shown to sustain long-term reporter gene expression within sensory neurones. Its activity within the CNS is, however, less well understood. In this study we characterise the activity of the LAP after stereotaxic delivery of recombinant HSV-1-based vectors to the brain. Two classes of vectors were utilised in these studies: (1) a replication-defective vector lacking the glycoprotein H and thymidine kinase genes, designated CS1, and (2) a virus mutant severely impaired for immediate–early (IE) gene expression which lacks functional VP16, ICP4 and ICP0 genes, designated in1388. Both vectors contain the LacZ gene under the control of the LAP. Following delivery of either vector to the striatum, β-gal expression was detected within anatomically related CNS regions distal to the site of injection. At these sites the number of β-gal-positive cells increased with time and remained stable up to 4 weeks p.i. β-Gal expression could not be detected at the site of injection after delivery of CS1 but β-gal expression within neurones located at this site was observed after delivery of in1388, indicating reduced toxicity of this severely disabled virus. Transgene expression decreased dramatically with both vectors at later time-points (>4 weeks after delivery), but PCR analysis demonstrated that viral genomes were stably maintained for up to 180 days following delivery, indicating that the loss of β-gal-positive neurones was not likely to be due to a loss of vector-transduced cells. Moreover, after delivery of an equivalent virus to the rat striatum in situ hybridisation analysis showed a similar decrease in the number of neurones expressing the endogenous LATs with time. These data indicate that although the HSV-1 LAP can drive the expression of foreign genes in a variety of CNS neurones, in these cells there is a slow down-regulation of the viral promoter which eventually results in the loss of detectable transgene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wagner EK, Bloom DC . Experimental investigation of herpes simplex virus latency Clin Microbiol Rev 1997 10: 419–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stevens JG . Human herpesviruses: a consideration of the latent state Microbiol Rev 1989 53: 318–332

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Efstathiou S et al. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans J Virol 1986 57: 446–455

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rock DL, Fraser NW . Detection of HSV-1 genome in central nervous system of latently infected mice Nature 1983 302: 523–525

    Article  CAS  PubMed  Google Scholar 

  5. Stevens JG et al. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons Science 1987 235: 1056–1059

    Article  CAS  PubMed  Google Scholar 

  6. Arthur JL, Everett R, Brierley I, Efstathiou S . Disruption of the 5′ and 3′ splice sites flanking the major latency-associated transcripts of herpes simplex virus type 1: evidence for alternate splicing in lytic and latent infections J Gen Virol 1998 79: 107–116

    Article  CAS  PubMed  Google Scholar 

  7. Farrell MJ, Dobson AT, Feldman LT . Herpes simplex virus latency-associated transcript is a stable intron Proc Natl Acad Sci USA 1991 88: 790–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alvira MR, Goins WF, Cohen JB, Glorioso JC . Genetic studies exposing the splicing events involved in herpes simplex virus type 1 latency-associated transcript production during lytic and latent infection J Virol 1999 73: 3866–3876

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Javier RT, Stevens JG, Dissette VB, Wagner EK . A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state Virology 1988 166: 254–257

    Article  CAS  PubMed  Google Scholar 

  10. Steiner I et al. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection EMBO J 1989 8: 505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Devi RG et al. Relationship between polyadenylated and nonpolyadenylated herpes simplex virus type 1 latency-associated transcripts J Virol 1991 65: 2179–2190

    Google Scholar 

  12. Thompson RL, Sawtell NM . The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency J Virol 1997 71: 5432–5440

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Perng GC et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript Science 2000 287: 1500–1503

    Article  CAS  PubMed  Google Scholar 

  14. Bloom DC et al. Long-term expression of genes in vivo using non-replicating HSV vectors Gene Therapy 1994 1: S36–38

    PubMed  Google Scholar 

  15. Hill JM et al. A 437-base-pair deletion at the beginning of the latency-associated transcript promoter significantly reduced adrenergically induced herpes simplex virus type 1 ocular reactivation in latently infected rabbits J Virol 1997 71: 6555–6559

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Perng GC et al. A herpes simplex virus type 1 latency-associated transcript mutant with increased virulence and reduced spontaneous reactivation J Virol 1999 73: 920–929

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Glorioso JC, DeLuca NA, Fink DJ . Development and application of herpes simplex virus vectors for human gene therapy Annu Rev Microbiol 1995 49: 675–710

    Article  CAS  PubMed  Google Scholar 

  18. Lachmann RH, Efstathiou S . The use of herpes simplex virus-based vectors for gene delivery to the nervous system Mol Med Today 1997 3: 404–411

    Article  CAS  PubMed  Google Scholar 

  19. Lachmann RH, Efstathiou S . Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system J Virol 1997 71: 3197–3207

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Marshall KR et al. Long-term transgene expression in mice infected with a herpes simplex virus type 1 mutant severely impaired for immediate–early gene expression J Virol 2000 74: 956–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith C, Lachmann RH, Efstathiou S . Expression from the herpes simplex virus type 1 latency-associated promoter in the murine central nervous system J Gen Virol 2000 3: 649–662

    Article  Google Scholar 

  22. Forrester A et al. Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted J Virol 1992 66: 341–348

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Efstathiou S, Kemp S, Darby G, Minson AC . The role of herpes simplex virus type 1 thymidine kinase in pathogenesis J Gen Virol 1989 70: 869–879

    Article  CAS  PubMed  Google Scholar 

  24. Leist TP, Sandri-Goldin RM, Stevens JG . Latent infections in spinal ganglia with thymidine kinase-deficient herpes simplex virus J Virol 1989 63: 4976–4978

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kosz-Vnenchak M, Coen DM, Knipe DM . Restricted expression of herpes simplex virus lytic genes during establishment of latent infection by thymidine kinase-negative mutant viruses J Virol 1990 64: 5396–5402

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilcox CL, Crnic LS, Pizer LI . Replication, latent infection, and reactivation in neuronal culture with a herpes simplex virus thymidine kinase-negative mutant Virology 1992 187: 348–352

    Article  CAS  PubMed  Google Scholar 

  27. Wilcox CL, Johnson EM Jr . Characterization of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro J Virol 1988 62: 393–399

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kosz-Vnenchak M, Jacobson J, Coen DM, Knipe DM . Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons J Virol 1993 67: 5383–5393

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nichol PF, Chang JY, Johnson EJ, Olivo PD . Herpes simplex virus gene expression in neurons: viral DNA synthesis is a critical regulatory event in the branch point between the lytic and latent pathways J Virol 1996 70: 5476–5486

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Honess RW, Roizman B . Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins J Virol 1974 14: 8–19

    CAS  PubMed  PubMed Central  Google Scholar 

  31. DeLuca NA, McCarthy AM, Schaffer PA . Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4 J Virol 1985 56: 558–570

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson PA, Wang MJ, Friedmann T . Improved cell survival by the reduction of immediate-early gene expression in replication-defective mutants of herpes simplex virus type 1 but not by mutation of the virion host shutoff function J Virol 1994 68: 6347–6362

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Marconi P et al. Replication-defective herpes simplex virus vectors for gene transfer in vivo Proc Natl Acad Sci USA 1996 93: 11319–11320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu N, Watkins SC, Schaffer PA, DeLuca NA . Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate–early genes encoding ICP4, ICP27, and ICP22 J Virol 1996 70: 6358–6369

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Samaniego LA, Neiderhiser L, DeLuca NA . Persistence and expression of the herpes simplex virus genome in the absence of immediate–early proteins J Virol 1998 72: 3307–3320

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Preston CM, Mabbs R, Nicholl MJ . Construction and characterization of herpes simplex virus type 1 mutants with conditional defects in immediate early gene expression Virology 1997 229: 228–239

    Article  CAS  PubMed  Google Scholar 

  37. Homer EG, Rinaldi A, Nicholl MJ, Preston CM . Activation of herpesvirus gene expression by the human cytomegalovirus protein pp71 J Virol 1999 73: 8512–8518

    CAS  PubMed  PubMed Central  Google Scholar 

  38. O'Hare P . The virion transactivator of herpes simplex virus Semin Virol 1993 4: 145–155

    Article  CAS  Google Scholar 

  39. Ace CI et al. Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate–early gene expression J Virol 1989 63: 2260–2269

    CAS  PubMed  PubMed Central  Google Scholar 

  40. DeLuca NA, Schaffer PA . Activation of immediate–early, early, and late promoters by temperature-sensitive and wild-type forms of herpes simplex virus type 1 protein ICP4 Mol Cell Biol 1985 5: 1997–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Preston CM . Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsK J Virol 1979 29: 275–284

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Everett RD, Orr A, Preston CM . A viral activator of gene expression functions via the ubiquitin-proteasome pathway EMBO J 1998 17: 7161–7169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Everett RD, Meredith M, Orr A . The ability of herpes simplex virus type 1 immediate–early protein Vmw110 to bind to a ubiquitin-specific protease contributes to its roles in the activation of gene expression and stimulation of virus replication J Virol 1999 73: 417–426

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Everett RD et al. The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms J Virol 1998 72: 6581–6591

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Preston CM, Nicholl MJ . Repression of gene expression upon infection of cells with herpes simplex virus type 1 mutants impaired for immediate-early protein synthesis J Virol 1997 71: 7807–7813

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Everett RD . Construction and characterization of herpes simplex virus type 1 mutants with defined lesions in immediate early gene 1 J Gen Virol 1989 70: 1185–1202

    Article  CAS  PubMed  Google Scholar 

  47. Sacks WR, Schaffer PA . Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture J Virol 1987 61: 829–839

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stow ND, Stow EC . Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110 J Gen Virol 1986 67: 2571–2585

    Article  CAS  PubMed  Google Scholar 

  49. Kesari S et al. Selective vulnerability of mouse CNS neurons to latent infection with a neuroattenuated herpes simplex virus-1 J Neurosci 1996 16: 5644–5653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maidment NT et al. Expression of the lacZ reporter gene in the rat basal forebrain, hippocampus, and nigrostriatal pathway using a nonreplicating herpes simplex vector Exp Neurol 1996 139: 107–114

    Article  CAS  PubMed  Google Scholar 

  51. Royce GJ . Laminar origin of cortical neurons which project upon the caudate nucleus: a horseradish peroxidase investigation in the cat J Comp Neurol 1982 205: 8–29

    Article  CAS  PubMed  Google Scholar 

  52. Ho DY, Mocarski ES . Beta-galactosidase as a marker in the peripheral and neural tissues of the herpes simplex virus-infected mouse Virology 1988 167: 279–283

    Article  CAS  PubMed  Google Scholar 

  53. Arthur JL et al. Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro J Virol 2001 75: 3885–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krisky DM et al. Deletion of multiple immediate–early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons Gene Therapy 1998 5: 1593–1603

    Article  CAS  PubMed  Google Scholar 

  55. Kim DG, Kang HM, Jang SK, Shin HS . Construction of a bifunctional mRNA in the mouse by using the internal ribosomal entry site of the encephalomyocarditis virus Mol Cell Biol 1992 12: 3636–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ghattas IR, Sanes JR, Majors JE . The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos Mol Cell Biol 1991 11: 5848–5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Creancier L, Morello D, Mercier P, Prats AC . Fibroblast growth factor 2 internal ribosome entry site (IRES) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation J Cell Biol 2000 150: 275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Creancier L, Mercier P, Prats AC, Morello D . c-myc Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice Mol Cell Biol 2001 21: 1833–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fink DJ, DeLuca NA, Goins WF, Glorioso JC . Gene transfer to neurons using herpes simplex virus-based vectors Annu Rev Neurosci 1996 19: 265–287

    Article  CAS  PubMed  Google Scholar 

  60. Ugolini G, Kuypers HG, Simmons A . Retrograde transneuronal transfer of herpes simplex virus type 1 (HSV 1) from motoneurones Brain Res 1987 422: 242–256

    Article  CAS  PubMed  Google Scholar 

  61. Ugolini G . Transneuronal transfer of herpes simplex virus type 1 (HSV 1) from mixed limb nerves to the CNS. I. Sequence of transfer from sensory, motor, and sympathetic nerve fibres to the spinal cord J Comp Neurol 1992 326: 527–548

    Article  CAS  PubMed  Google Scholar 

  62. McMenamin MM et al. Potential and limitations of a gamma 34.5 mutant of herpes simplex 1 as a gene therapy vector in the CNS Gene Therapy 1998 5: 594–604

    Article  CAS  PubMed  Google Scholar 

  63. Cabrera CV et al. Herpes simplex virus DNA sequences in the CNS of latently infected mice Nature 1980 288: 288–290

    Article  CAS  PubMed  Google Scholar 

  64. Knotts FB, Cook ML, Stevens JG . Latent herpes simplex virus in the central nervous system of rabbits and mice J Exp Med 1973 138: 740–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kastrukoff L et al. Isolation of virus from brain after immunosuppression of mice with latent herpes simplex Nature 1981 291: 432–433

    Article  CAS  PubMed  Google Scholar 

  66. Ramakrishnan R et al. Competitive quantitative PCR analysis of herpes simplex virus type 1 DNA and latency-associated transcript RNA in latently infected cells of the rat brain J Virol 1994 68: 1864–1873

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yamamura J et al. Long-term gene expression in the anterior horn motor neurons after intramuscular inoculation of a live herpes simplex virus vector Gene Therapy 2000 7: 934–941

    Article  CAS  PubMed  Google Scholar 

  68. Boursnell ME et al. A genetically inactivated herpes simplex virus type 2 (HSV-2) vaccine provides effective protection against primary and recurrent HSV-2 disease J Infect Dis 1997 175: 16–25

    Article  CAS  PubMed  Google Scholar 

  69. Wilkinson GW, Akrigg A . Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector Nucleic Acids Res 1992 20: 2233–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stow ND, Wilkie NM . An improved technique for obtaining enhanced infectivity with herpes simplex virus type 1 DNA J Gen Virol 1976 33: 447–458

    Article  CAS  PubMed  Google Scholar 

  71. Arthur J, Efstathiou S, Simmons A . Intranuclear foci containing low abundance herpes simplex virus latency-associated transcripts visualized by non-isotopic in situ hybridization J Gen Virol 1993 74: 1363–1370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many thanks to Chris Smith for help with stereotaxic injections and useful discussions during the course of this work. This work was supported by a BBSRC/MRC funded DTI-LINK grant (N. 8/CE09147), in conjunction with Cantab Pharmaceuticals Ltd. RHL is a Wellcome Clinician Scientist Fellow.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarpini, C., May, J., Lachmann, R. et al. Latency associated promoter transgene expression in the central nervous system after stereotaxic delivery of replication-defective HSV-1-based vectors. Gene Ther 8, 1057–1071 (2001). https://doi.org/10.1038/sj.gt.3301497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.gt.3301497

Keywords

This article is cited by

Search

Quick links