Abstract
SEVERAL authors1–3 have suggested that comets or carbonaceous asteroids contributed large amounts of organic matter to the primitive Earth, and thus possibly played a vital role in the origin of life. But organic matter cannot survive the extremely high temperatures (> 104 K) reached on impact, which atomize the projectile and break all chemical bonds. Only fragments small enough to be gently decelerated by the atmosphere—principally meteors of 10−12–10−6 g—can deliver their organic matter intact4. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only ~0.006 g cm−2 intact organic carbon would accumulate in 108 yr, but at the higher rates of ~4 x 109 yr ago, about 20 g cm−2 may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on Earth.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Oró, J. Nature 190, 389–390 (1961).
Delsemme, A. H. Origins Life 14, 51–60 (1984).
Deamer, D. W., Brack, A., Morowitz, H., Weber, A. & Usher, D. Origins Life (in the press).
Anders, E., Hayatsu, R. & Studier, M. H. Science 182, 781–790 (1973).
Kyte, F. T. & Wasson, J. T. Science 232, 1225–1229 (1986).
Hughes, D. W. in Cosmic Dust (ed. McDonnell, J. A. M.) 123–185 (Wiley, New York, 1978).
Dohnanyi, J. S. Science 173, 558 (1971).
Barker, J. L. & Anders, E. Geochim. cosmochim. Acta 32, 627–645 (1968).
Anders, E., Ganapathy, R., Krähenbühl, U. & Morgan, J. W. The Moon 8, 3–24 (1973).
Shoemaker, E. M. A. Rev. Earth planet. Sci. 11, 461–494 (1983).
Brownlee, D. E. A. Rev. Earth planet. Sci. 13, 189–215 (1985).
Sears, D. W. Mod. Geol. 5, 155–164 (1975).
Baldwin, B. & Shaeffer, Y. J. geophys. Res. 76, 4653–4668 (1971).
Schramm, L. S., Brownlee, D. E. & Wheelock, M. M. Meteoritics 24, 99–112 (1989).
Jessberger, E. K., Christoforidis, A. & Kissel J. Nature 332, 691–695 (1988).
Weissman, P. R. Geol. Soc. Am. Spec. Pap. 190, 15–24 (1982).
Wetherill, G. W. & ReVelle, D. O. Icarus 48, 308–328 (1981).
Wetherll, G. W. Phil. Trans. R. Soc. A323, 323–337 (1987).
Wetherill, G. W. & Shoemaker, E. M. Geol. Soc. Am. Spec. Pap. 190, 1–13 (1982).
Palme, H., Grieve, R. A. F. & Wolf, R. Geochim. cosmochim. Acta 45, 2417–2424 (1981).
ReVelle, D. O. J. J. atmos. terr. Phys. 41, 453–473 (1979).
Mason, B. Principles of Geochemistry 3rd edn (Wiley, New York, 1966).
Anders, E. Acct. chem. Res. 1, 289–298 (1968).
Turekian, K. K. & Clark, S. P. Jr. Earth planet. Sci. Lett. 6, 346–348 (1969).
Anders, E. & Owen, T. Science 198, 453–465 (1977).
Matsui, T. & Abe, Y. Nature 322, 526–528 (1986).
Zahnle, K. J., Kasting, J. F. & Pollack, J. B. Icarus 74, 62–97 (1988).
Hayatsu, R. & Anders, E. Topics curr. Chem. 99, 1–37 (1981).
Gradie, J. & Tedesco, E. Science 216, 1405–1407 (1982).
Morgan, J. W. J. geophys. Res. 91, 12375–12387 (1986).
Kimura, K., Lewis, R. S. & Anders, E. Geochim. cosmochim. Acta 38, 683–701 (1974).
Morgan, J. W., Wandless, G. A., Petrie, R. K. & Irving, A. J. Tectonophys. 75, 47–67 (1981).
Chyba, C. F. Nature 330, 632–635 (1987).
Ip, W.-H. & Fernandez, J. A. Icarus 74, 47–61 (1988).
Gros, J., Takahashi, H., Hertogen, J., Morgan, J. W. & Anders, E. Proc. Lunar Sci. Conf. 7, 2403–2435 (1976).
Hertogen, J., Janssens M.-J., Takahashi, H., Palme, H. & Anders, E. Proc Lunar Sci. Conf. 8, 17–45 (1977).
Chapman, C. R. & Davis, D. R. Science 190, 553–556 (1975).
Stribling, S. & Miller, S. L. Origins Life 17, 261–273 (1987).
Deamer, D. W. Nature 317, 792–794 (1985).
Mullie, F. & Reisse, J. Topics curr. Chem. 139, 83–117 (1987).
Cronin, J. R., Pizzarello, S. & Cruikshank, D. P. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 819–857 (Univ. Arizona Press, 1988).
Thomas, P. J., Chyba, C. F., Brookshaw, L. & Sagan, C. Lunar planet. Sci. 20, 1117–1118 (1989).
Öpik, E. J. in Proc. Geophys. Lab. Lawrence Radiation Lab. Cratering Symp., Rep. UCRl-6438, 2, Paper S. 1–28 (Lawrence Radiation Lab., Berkeley, 1961).
Zhao, M. & Bada, J. L. Nature 339, 463–465 (1989).
Wolbach, W. S., Lewis, R. S. & Anders, E. Science 230, 167–170 (1985).
Lewis, R. S. & Wolbach, W. S. Meteoritics 21, 434–435 (1986).
Hudson, B., Flynn, G. J., Fraundorf, P., Hohenberg, C. M. & Shirck, J. Science 211, 383–386 (1981).
Emiliani, C., Kraus, E. B. & Shoemaker, E. M. Earth planet. Sci. Lett. 55, 317–334 (1981).
Turco, R. P. et al. Icarus 50, 1–52 (1982).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Anders, E. Pre-biotic organic matter from comets and asteroids. Nature 342, 255–257 (1989). https://doi.org/10.1038/342255a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/342255a0
This article is cited by
-
The rocky road to organics needs drying
Nature Communications (2023)
-
Synthesis of prebiotic organics from CO2 by catalysis with meteoritic and volcanic particles
Scientific Reports (2023)
-
Plausible Emergence and Self Assembly of a Primitive Phospholipid from Reduced Phosphorus on the Primordial Earth
Origins of Life and Evolution of Biospheres (2021)
-
Impact-induced amino acid formation on Hadean Earth and Noachian Mars
Scientific Reports (2020)
-
Concerns of Organic Contamination for Sample Return Space Missions
Space Science Reviews (2020)


