Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Homologous activators of ras in fission and budding yeast

Abstract

THE ras proto-oncogene products are plasma membrane-bound, guanine nucleotide-binding proteins implicated in signal transduction across the plasma membrane1. But the signal(s) that activates the ras pathway(s) is not known. In the budding yeast Saccharomyces cerevisiae, the CDC25 gene product acts upstream of Ras proteins2,3, but it has not been clear whether CDC25 function is unique to the S. cerevisiae ras pathway. Here we report that the ste6 gene of fission yeast Schizosaccharomyces pombe is a homologue of CDC25: the ste6 gene product and the CDC25 gene product have significant amino-acid similarity in their C-terminal regions. Like the S. pombe ras1gene4,5, ste6 is essential for mating6. Epistatic interactions indicate that the ste6 gene functions upstream of ras1. We propose that ste6 and CDC25 activate Ras protein through a common mechanism, perhaps by promoting GDP-GTP exchange, even though it seems that the function of Ras protein in budding yeast differs from that in fission yeast. Homologues of ste6 and CDC25 could regulate ras activity in other eukaryotic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barbacid, M. A. Rev. Biochem. 56, 779–827 (1987).

    Article  CAS  Google Scholar 

  2. Broeck, D. et al. Cell 48, 789–799 (1987).

    Article  Google Scholar 

  3. Robinson, L. C., Gibbs, J. B., Marshall, M. S. & Tatchell, K. Science 235, 1218–1221 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Fukui, Y., Kozasa, T., Kaziro, Y., Takeda, T. & Yamamoto, M. Cell 44, 329–336 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Nadin-Davis, S. A., Nasim, A. & Beach, D. EMBO J. 5, 2963–2971 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Girgsdies, O. Curr. Genet. 6, 223–227 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Lund, P. M. et al. Molec. gen. Genet. 209, 627–629 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Thuriaux, P., Sipiczki, M. & Fantes, P. A. J. gen. Microbiol. 116, 525–528 (1980).

    CAS  PubMed  Google Scholar 

  9. Michael, H. & Gutz, H. Yeast 3, 5–9 (1987).

    Article  Google Scholar 

  10. Rothstein, R. Meth. Enzym. 101, 202–211 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Lipman, W. J. & Pearson, W. R. Science 227, 1435–1441 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Camonis, J. H. et al. EMBO J. 5, 375–380 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boy-Marcotte, E., Damak, F., Camonis, J., Garreau, H. & Jacquet, M. Gene 77, 21–30 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Fukui, Y., Kaziro, Y. & Yamamoto, M. EMBO J. 5, 1991–1993 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Camonis, J. & Jacquet, M. Molec. cell. Biol. 8, 2980–2983 (1986).

    Article  Google Scholar 

  16. Powers, S., O'Neill, K. & Wigler, M. Molec. cell. Biol. 9, 390–395 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fukui, Y. & Yamamoto, M. Molec. gen. Genet. 215, 26–31 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Fukui, Y., Miyake, S., Satoh, M. & Yamamoto, M. Molec. cell. Biol. 9, 5617–5622 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Egel, R. Planta 98, 89–96 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Beach, D., Piper, M. & Nurse, P. Molec. gen. Genet. 187, 326–329 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Gutz, H., Heslot, H., Leupold, U. & Lopreino, N. in Handbook of Genetics Vol. 1 (ed. King, R. D.) 395–446 (Plenum, New York, 1974).

    Google Scholar 

  22. Bach, M.-L. Curr. Genet. 12, 527–534 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Ito, H., Fukada, Y., Murata, K. & Kimura, A. J. Bact. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sipiczski, M. & Ferenczy, L. Molec. gen. Genet. 151, 77–81 (1977).

    Article  Google Scholar 

  25. Sanger, F., Nicklen, S. & Coulson, A. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Tabor, S. & Richardson, C. C. Proc. natn. Acad. Sci. USA. 84, 4767–4771 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Henikoff, S. Gene 28, 351–359 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Vieira, J. & Messing, J. Meth. Enzym. 153, 3–11 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Jacquet, M., Camonis, J., Boy-Marcotte, E., Damak, F. & Garreau, H. in The Guanine-Nucleotide Binding Proteins (eds. Bosch, L., Kraal, B. & Parmeggiani, A.) 241–249 (Plenum, New York. 1989).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, D., Fukui, Y. & Yamamoto, M. Homologous activators of ras in fission and budding yeast. Nature 344, 355–357 (1990). https://doi.org/10.1038/344355a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/344355a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing