Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using Drosophila as a model insect

Key Points

  • Insects are a huge health and agricultural burden.

  • The fruitfly can be used as a model insect to study problems in insect biology. For example, Drosophila melanogaster can be used to develop sterile-male techniques of insect control and to study transposable elements.

  • Insects cause important health problems by acting as disease vectors. This review focuses on malaria, the insect-borne disease with the largest effect. There are no malarial vaccines and the insect vector — the Anopheles mosquito — is becoming increasingly resistant to available drugs.

  • Studying the fruitfly as a model insect should help develop new research approaches, for example, for identifying interesting genes and, directly, for studying host–pathogen interactions.

  • Insects have an immune system that fights invading parasites. Because it is difficult to do genetic analysis on the real vectors, Drosophila is useful for discovering the genetic component of the immune system in vector insects.

  • The fruitfly can function as a surrogate disease vector and can be used to study gut microbiology. The cellular and humoral immune systems interact in Drosophila. The fruitfly can therefore be used to support the development of plasmodia.

  • Drosophila is also useful for learning about pesticide–insect interactions. It can be used to identify targets of known pesticides, to identify mechanisms of pesticide resistance and to identify new pesticide targets.

Abstract

The fruitfly Drosophila melanogaster has become such a popular model organism for studying human disease that it is often described as a little person with wings. This view has been strengthened with the sequencing of the Drosophila genome and the discovery that 60% of human disease genes have homologues in the fruitfly. In this review, I discuss the approach of using Drosophila not only as a model for metazoans in general but as a model insect in particular. Specifically, I discuss recent work on the use of Drosophila to study the transmission of disease by insect vectors and to investigate insecticide function and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Routes of disease transmission in insect vectors.
Figure 2: Plasmodial life cycle.
Figure 3: Insect immunity.
Figure 4: Insecticide sites of action.

Similar content being viewed by others

References

  1. Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 ( 2000).

    Article  CAS  Google Scholar 

  2. Thomas, D. D., Donnelly, C. A., Wood, R. J. & Alphey, L. S. Insect population control using a dominant, repressible, lethal genetic system . Science 287, 2474–2476 (2000).

    Article  CAS  Google Scholar 

  3. Robinson, A. S. & Franz, G. in Insect Transgenesis Methods and Applications (eds Handler, A. M. & James, A. A.) 307–318 (CRC, New York, 2000).

    Book  Google Scholar 

  4. O'Brochta, D. A., Warren, W. D., Saville, K. J. & Atkinson, P. W. Hermes, a functional non-Drosophilid insect gene vector from Musca domestica . Genetics 142, 907– 914 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. O'Brochta, D. A. & Atkinson, P. W. Transposable elements and gene transformation in non-drosophilid insects. Insect Biochem. Mol. Biol. 26, 739–753 (1996).

    Article  CAS  Google Scholar 

  6. Coates, C. J., Jasinskiene, N., Miyashiro, L. & James, A. A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl Acad. Sci. USA 95, 3748–3751 (1998).

    Article  CAS  Google Scholar 

  7. Catteruccia, F. et al. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405, 959 –962 (2000).

    Article  CAS  Google Scholar 

  8. Shahabuddin, M., Cociancich, S. & Zieler, H. The search for novel malaria transmission-blocking targets in the mosquito midgut. Parasitol. Today 14, 493–497 (1998).

    Article  CAS  Google Scholar 

  9. Beier, J. C. Malaria parasite development in mosquitoes. Annu. Rev. Entomol. 43, 519–543 ( 1998).

    Article  CAS  Google Scholar 

  10. Beaty, B. J. & Marquardt, W. C. (eds) The Biology of Disease Vectors (Colorado Univ. Press, Niwot, 1996).

    Google Scholar 

  11. Sherman, I. W. (ed.) Malaria; Parasite Biology, Pathogenesis and Protection (ASM, Washington DC, 1998).

    Google Scholar 

  12. Garnham, P. C. C. Malaria Parasites and other Haemosporidia (Blackwell Scientific Publications, Oxford, 1966).

    Google Scholar 

  13. Korsinczky, M. et al. Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob. Agents Chemother. 44, 2100–2108 (2000).

    Article  CAS  Google Scholar 

  14. Warhurst, D. C. Drug resistance in Plasmodium falciparum malaria. Infection 27, S55–S58 ( 1999).

    Article  Google Scholar 

  15. Reed, M. B., Saliba, K. J., Caruana, S. R., Kirk, K. & Cowman, A. F. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403, 906–909 ( 2000).

    Article  CAS  Google Scholar 

  16. Binka, F. N. et al. Impact of permethrin impregnated bednets on child mortality in Kassena-Nankana district, Ghana: a randomized controlled trial. Trop. Med. Int. Health 1, 147–154 (1996).

    Article  CAS  Google Scholar 

  17. Carter, R. Epidemiological considerations for malaria reduction by transmission blocking vaccination. Parassitologia 41, 415– 420 (1999).

    CAS  PubMed  Google Scholar 

  18. Beerntsen, B. T., James, A. A. & Christensen, B. M. Genetics of mosquito vector competence. Microbiol. Mol. Biol. Rev. 64, 115– 137 (2000).

    Article  CAS  Google Scholar 

  19. James, A. A. et al. Controlling malaria transmission with geneticaly engineered, Plasmodium-resistant mosquitoes: milestones in a model system. Parassitologia 41, 461–471 (1999).

    CAS  PubMed  Google Scholar 

  20. Hoffmann, J., Kafatos, F., Janeway, C. & Ezekowitz, R. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  CAS  Google Scholar 

  21. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A., Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 ( 1997).

    Article  CAS  Google Scholar 

  22. Jasinskiene, N. et al. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc. Natl Acad. Sci. USA 95, 3743–3747 (1998).

    Article  CAS  Google Scholar 

  23. Zheng, L., Benedict, M. Q., Cornel, A. J., Collins, F. H. & Kafatos, F. C. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143, 941–952 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng, L., Collins, F. H., Kumar, V. & Kafatos, F. C. A detailed genetic map for the X chromosome of the malaria vector, Anopheles gambiae. Science 261, 605– 608 (1993).

    Article  CAS  Google Scholar 

  25. Dimopoulos, G. et al. Anopheles gambiae pilot gene discovery project: identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. Proc. Natl Acad. Sci. USA 97, 6619–6624 (2000).

    Article  CAS  Google Scholar 

  26. Schneider, D., Hudson, K., Lin, T. & Anderson, K. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. Genes Dev. 5, 797–807 ( 1991).

    Article  CAS  Google Scholar 

  27. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. & Hoffmann, J. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 ( 1996).The first characterization of an intracellular signalling cascade in an insect immune pathway.

    Article  CAS  Google Scholar 

  28. Ribeiro, J. M. Blood-feeding in mosquitoes: probing time and salivary gland anti-haemostatic activities in representatives of three genera (Aedes, Anopheles , Culex). Med. Vet. Entomol. 14, 142–148 (2000).

    Article  CAS  Google Scholar 

  29. Charlab, R., Rowton, E. D. & Ribeiro, J. M. The salivary adenosine deaminase from the sand fly Lutzomyia longipalpis. Exp. Parasitol. 95, 45–53 (2000).

    Article  CAS  Google Scholar 

  30. Valenzuela, J. G., Charlab, R., Mather, T. N. & Ribeiro, J. M. Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J. Biol. Chem. 275, 18717–18723 (2000 ).

    Article  CAS  Google Scholar 

  31. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999).

    Article  CAS  Google Scholar 

  32. Ye, Y., Lukinova, N. & Fortini, M. E. Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398 , 525–529 (1999).

    Article  CAS  Google Scholar 

  33. Moore, M. S. et al. Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93, 997–1007 (1998).

    Article  CAS  Google Scholar 

  34. Bainton, R. J. et al. Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr. Biol. 10, 187–194 (2000).

    Article  CAS  Google Scholar 

  35. Xiong, B. & Jacobs-Lorena, M. Gut-specific transcriptional regulatory elements of the carboxypeptidase gene are conserved between black flies and Drosophila. Proc. Natl Acad. Sci. USA 92, 9313–9317 (1995).

    Article  CAS  Google Scholar 

  36. Skavdis, G., Siden-Kiamos, I., Muller, H. M., Crisanti, A. & Louis, C. Conserved function of Anopheles gambiae midgut-specific promoters in the fruitfly. EMBO J. 15, 344–350 ( 1996).

    Article  CAS  Google Scholar 

  37. Huang, G., Vergne, E. & Gubler, D. Failure of dengue viruses to replicate in Culex quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 29, 911–914 (1992).

    Article  CAS  Google Scholar 

  38. Feldmann, A., van, G. G., van, d. V.-B. M. & Jansen, R. Genetics of refractoriness to Plasmodium falciparum in the mosquito Anopheles stephensi. Med. Vet. Entomol. 12, 302–312 (1998).

    Article  CAS  Google Scholar 

  39. Beerntsen, B., Severson, D., Klinkhammer, J., Kassner, V. & Christensen, B. Aedes aegypti: a quantitative trait locus (QTL) influencing filarial worm intensity is linked to QTL for susceptibility to other mosquito-borne pathogens. Exp. Parasitol. 81, 355–362 ( 1995).

    Article  CAS  Google Scholar 

  40. Zheng, L. et al. Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science 276, 425–428 (1997).

    Article  CAS  Google Scholar 

  41. Han, Y. S., Chun, J., Schwartz, A., Nelson, S. & Paskewitz, S. M. Induction of mosquito hemolymph proteins in response to immune challenge and wounding. Dev. Comp. Immunol. 23, 553–562 (1999).

    Article  CAS  Google Scholar 

  42. della Torre, A., Favia, G., Mariotti, G., Coluzzi, M. & Mathiopoulos, K. D. Physical map of the malaria vector Anopheles gambiae . Genetics 143, 1307– 1311 (1996).

    CAS  PubMed  Google Scholar 

  43. Dimopoulos, G. et al. Integrated genetic map of Anopheles gambiae: use of RAPD polymorphisms for genetic, cytogenetic and STS landmarks. Genetics 143, 953–960 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jackson, G. R. et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642 ( 1998).

    Article  CAS  Google Scholar 

  45. Mathey-Prevot, B. & Perrimon, N. Mammalian and Drosophila blood: JAK of all trades? Cell 92, 697–700 (1998).

    Article  CAS  Google Scholar 

  46. Dimopoulos, G., Richman, A., Muller, H. M. & Kafatos, F. C. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc. Natl Acad. Sci. USA 94 , 11508–11513 (1997).

    Article  CAS  Google Scholar 

  47. Lehane, M. J., Wu, D. & Lehane, S. M. Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc. Natl Acad. Sci. USA 94, 11502–11507 (1997).

    Article  CAS  Google Scholar 

  48. Richman, A. et al. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA. Insect Mol. Biol. 5, 203–210 ( 1996).

    Article  CAS  Google Scholar 

  49. Lowenberger, C. et al. Mosquito–Plasmodium interactions in response to immune activation of the vector. Exp. Parasitol. 91, 59–69 (1999).

    Article  CAS  Google Scholar 

  50. Dimopoulos, G., Seeley, D., Wolf, A. & Kafatos, F. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. EMBO J. 17, 6115–6123 ( 1998).References 49 and 50 describe the molecular responses of mosquitoes to plasmodial infections and show that the largest responses occur as the parasites cross epithelia.

    Article  CAS  Google Scholar 

  51. Shahabuddin, M., Fields, I., Bulet, P., Hoffmann, J. & Miller, L. Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin. Exp. Parasitol. 89, 103–112 (1998).

    Article  CAS  Google Scholar 

  52. Luckhart, S., Vodovotz, Y., Cui, L. & Rosenberg, R. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc. Natl Acad. Sci. USA 95, 5700–5705 (1998).

    Article  CAS  Google Scholar 

  53. Paskewitz, S. M., Brown, M. R., Lea, A. O. & Collins, F. H. Ultrastructure of the encapsulation of Plasmodium cynomolgi (B strain) on the midgut of a refractory strain of Anopheles gambiae. J. Parasitol. 74, 432–439 ( 1988).

    Article  CAS  Google Scholar 

  54. Wu, L. & Anderson, K. Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392, 93–97 (1998).

    Article  CAS  Google Scholar 

  55. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569–580 (2000).

    Article  CAS  Google Scholar 

  56. Basset, A. et al. The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc. Natl Acad. Sci. USA 97, 3376–3381 (2000).This paper describes the Erwinia carotovora Drosophila pathogen–host system, which will provide a simple method for doing genetic screens in the future.

    Article  CAS  Google Scholar 

  57. Durvasula, R. V. et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc. Natl Acad. Sci. USA 94, 3274–3278 (1997).

    Article  CAS  Google Scholar 

  58. Watanabe, K., Abe, K. & Sato, M. Biological control of an insect pest by gut-colonizing Enterobacter cloacae transformed with ice nucleation gene. J. Appl. Microbiol. 88, 90–97 ( 2000).

    Article  CAS  Google Scholar 

  59. Bakula, M. The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster. J. Invert. Pathol. 14, 365–374 (1969).

    Article  CAS  Google Scholar 

  60. Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10, 781–784 (2000).Describes the functional cooperation between the cellular and humoral immune response in the fruitfly and introduces a new type of enhancer screen for finding immunocompromized Drosophila mutants.

    Article  CAS  Google Scholar 

  61. Schneider, D. & Shahabuddin, M. Malaria parasite development in a Drosophila model. Science 288, 2376–2379 (2000). A Plasmodium– Drosophila parasite–host model permits the identification of flies that have altered abilities to support plasmodia growth.

    Article  CAS  Google Scholar 

  62. Sultan, A. A. et al. TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites. Cell 90, 511 –522 (1997).

    Article  CAS  Google Scholar 

  63. Menard, R. et al. Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes. Nature 385, 336 –340 (1997).

    Article  CAS  Google Scholar 

  64. Dessens, J. T. et al. CTRP is essential for mosquito infection by malaria ookinetes . EMBO J. 18, 6221–6227 (1999).

    Article  CAS  Google Scholar 

  65. Shemshedini, L. & Wilson, T. G. Resistance to juvenile hormone and an insect growth regulator in Drosophila is associated with an altered cytosolic juvenile hormone-binding protein. Proc. Natl Acad. Sci. USA 87, 2072–2076 (1990).

    Article  CAS  Google Scholar 

  66. Ashok, M., Turner, C. & Wilson, T. G. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc. Natl Acad. Sci. USA 95, 2761–2766 (1998).

    Article  CAS  Google Scholar 

  67. Daborn, P. J., McKenzie, J. A. & Batterham, P. A genetic analysis of cyromazine resistance in Drosophila melanogaster (Diptera: Drosophilidae). J. Econ. Entomol. 93, 911–919 (2000). References 66 and 67 are good examples of genetic analysis of insecticide targets using the fruitfly as a model organism.

    Article  CAS  Google Scholar 

  68. Stilwell, G., Rocheleau, T. & French-Constant, R. GABA receptor minigene rescues insecticide resistance phenotypes in Drosophila. J. Mol. Biol. 253, 223–227 (1995).

    Article  CAS  Google Scholar 

  69. Pittendrigh, B., Reenan, R., French-Constant, R. & Ganetzky, B. Point mutations in the Drosophila sodium channel gene para associated with resistance to DDT and pyrethroid insecticides. Mol. Gen. Genet. 256, 602–610 ( 1997).

    Article  CAS  Google Scholar 

  70. Mutero, A., Pralavorio, M., Bride, J. M. & Fournier, D. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase . Proc. Natl Acad. Sci. USA 91, 5922– 5926 (1994).

    Article  CAS  Google Scholar 

  71. Ffrench-Constant, R., Pittendrigh, B., Vaughan, A. & Anthony, N. Why are there so few resistance-associated mutations in insecticide target genes? Phil. Trans. R. Soc. Lond. B 353, 1685–1693 (1998).

    Article  CAS  Google Scholar 

  72. Ware, G. W. The Pesticide Book (Thomson, Fresno, 2000).

    Google Scholar 

  73. Tomita, T., Liu, N., Smith, F. F., Sridhar, P. & Scott, J. G. Molecular mechanisms involved in increased expression of a cytochrome P450 responsible for pyrethroid resistance in the housefly, Musca domestica. Insect Mol. Biol. 4, 135–140 (1995).

    Article  CAS  Google Scholar 

  74. Rosamond, J. & Allsop, A. Harnessing the power of the genome in the search for new antibiotics. Science 287, 1973–1976 (2000).

    Article  CAS  Google Scholar 

  75. Washburn, J. O. & Volkman, L. E. Compositions and methods for use in controlling insect populations. Patent number 5,908,785. (United States Patent Office, 1999).

    Google Scholar 

  76. Billker, O. et al. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392, 289–292 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Sylvia Sanders, Alan Jasanoff, Smita Mishra, Erin Troy and Joseph Weiss for reading the manuscript. I also thank Mohammad Shahhabudin for many discussions about Plasmodium development and vector biology.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Chagas Disease

leishmaniasis

sleeping sickness

river Blindness

mosquito

Pellino

Cactus

Toll

Alzheimer disease

Huntingtin

Huntington disease

GNBP

Defensin

ICHIT

NOS

ISPL5

Cecropin

dredd

Rst(1)JH

Rdl

Para

Ace

Rst(1)JH

FURTHER INFORMATION

Exelexis

ELS links

Malaria

Antimicrobial peptides and proteins

Glossary

ANOPHELINE

A mosquito of the subfamily that includes the genus Anopheles, and which may transmit malaria.

CULICINE

A mosquito of the subfamily that includes the genera Mansonia, Aedes and Culex, and which may transmit several diseases.

SCAVENGER RECEPTOR

A cell-surface molecule responsible for recognizing and targeting foreign material for phagocytosis.

SYNCYTIUM

A multinucleate cell in which the nuclei are not separated by cell membranes.

QUANTITATIVE TRAIT LOCUS (QTL)

A genetic locus identified through the statistical analysis of complex traits (such as plant height or body weight). These traits are typically affected by more than one gene, and also by the environment.

MELANIZATION

A process by which the insect produces melanin and reactive oxygen to coat and kill an invading parasite.

COMMENSAL

An organism participating in a symbiotic relationship, in which one benefits and the other derives neither benefit nor harm.

HAEMOCOEL

The body cavity of an insect. Insects have open circulatory systems and the insect's organs are suspended in the haemocoel and bathed in haemolymph, the insect equivalent of lymph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, D. Using Drosophila as a model insect. Nat Rev Genet 1, 218–226 (2000). https://doi.org/10.1038/35042080

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/35042080

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing