Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extent to which homology can constrain coding exon junctional diversity in V(D)J recombination

An Erratum to this article was published on 30 September 1993

Abstract

AMONG site-directed DNA recombination systems, V(D)J recombination is noteworthy in that identical reactants yield different recombination products at the junction of joined segments. This variation is the basis for diversity at the base of antigen receptor binding pockets and corresponds to V-(D)-J DNA junctions. An abundance of certain junctions has been noted1–5. It has been proposed that these junctions are favoured because they occur where short regions of homology in participating coding ends might align preferentially1. Here we use a system that is entirely free from cellular selection to show that the diversity of coding joints can be severely restricted when the coding ends participating in the reaction have short regions of homology. This constraint on diversity is diminished but not eliminated by terminal deoxynucleotidyl transferase, a mechanistic feature that has implications for the establishment of the immune repertoire.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gu, H., Forster, I. & Rajewsky, K. EMBO J. 9, 2133–2140 (1990).

    Article  CAS  Google Scholar 

  2. Gu, H., Kitamura, D. & Rajewsky, K. Cell 65, 47–54 (1991).

    Article  CAS  Google Scholar 

  3. Feeney, A. J. J. Immun. 147, 4343–4350 (1991).

    CAS  PubMed  Google Scholar 

  4. Feeney, A. J. J. Immun. 149, 222–229 (1992).

    CAS  PubMed  Google Scholar 

  5. Chang, Y., Paige, C. J. & Wu, G. E. EMBO J. 11, 1891–1899 (1992).

    Article  CAS  Google Scholar 

  6. Lieber, M. R., Hesse, J. E., Mizuuchi, K. & Gellert, M. Proc. natn. Acad. Sci. U.S.A. 85, 8588–8592 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Kallenbach, S., Doyen, N., D'Andon, M. F. & Rougeon, F. Proc. natn. Acad. Sci. U.S.A. 89, 2799–2803 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Lafaille, J. J., DeCloux, A., Bonneville, M., Takegaki, Y. & Tonegawa, S. Cell 59, 859–870 (1989).

    Article  CAS  Google Scholar 

  9. Schatz, D. G., Oettinger, M. A. & Baltimore, D. Cell 59, 1035–1048 (1989).

    Article  CAS  Google Scholar 

  10. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. Science 248, 1517–1523 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Pergola, F., Zdzienicka, M. Z. & Lieber, M. R. Molec. cell. Biol. (in the press).

  12. Hesse, J. E., Lieber, M. R., Mizuuchi, K. & Gellert, M. Genes Dev. 3, 1053–1061 (1989).

    Article  CAS  Google Scholar 

  13. Hesse, J. E., Lieber, M. R., Gellert, M. & Mizuuchi, K. Cell 49, 775–783 (1987).

    Article  CAS  Google Scholar 

  14. Meek, K. Science 250, 820–823 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Feeney, A. J. J. exp. Med. 172, 1377–1390 (1990).

    Article  CAS  Google Scholar 

  16. Lieber, M. R. FASEB J. 5, 2934–2944 (1991).

    Article  CAS  Google Scholar 

  17. Roth, D. B., Menetski, J. P., Nakajima, P. B., Bosma, M. J. & Gellert, M. Cell 70, 983–991 (1992).

    Article  CAS  Google Scholar 

  18. Gearhart, P. J., Johnson, N. D., Douglas, R. & Hood, L. Nature 291, 29–34 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Claflin, J. L. & Berry, J. J. Immun. 141, 4012–4019 (1988).

    CAS  PubMed  Google Scholar 

  20. Feeney, A. J., Clarke, S. H. & Mosier, D. E. J. Immun. 141, 1267–1272 (1988).

    CAS  PubMed  Google Scholar 

  21. Pollok, B. A., Kearney, J. F., Vakil, M. & Perry, R. P. Nature 311, 376–379 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Briles, D. E., Forman, C., Hudak, S. & Claflin, J. L. J. exp. Med. 156, 1177–1185 (1982).

    Article  CAS  Google Scholar 

  23. Potter, M. Ann. N.Y. Acad. Sci. 190, 306–321 (1971).

    Article  ADS  CAS  Google Scholar 

  24. Claflin, J. L., Berry, J., Flaherty, D. & Dunnick, W. J. Immun. 138, 3060–3068 (1987).

    CAS  PubMed  Google Scholar 

  25. Lal, R. B., Paranjape, R. S., Briles, D. E., Nutman, T. B. & Ottesen, E. A. J. Immun. 138, 3454–3460 (1987).

    CAS  PubMed  Google Scholar 

  26. Herzenberg, L. A. & Herzenberg, L. A. Cell 59, 953–954 (1989).

    Article  CAS  Google Scholar 

  27. Gauss, G. H. & Lieber, M. R. Genes Dev. 6, 1553–1561 (1992).

    Article  CAS  Google Scholar 

  28. Alt, F. et al. EMBO J. 3, 1209–1219 (1984).

    Article  CAS  Google Scholar 

  29. Kao, F.-T., Chasin, L. & Puck, T. T. Proc. natn. Acad. Sci. U.S.A. 64, 1284–1291 (1969).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstein, R., Lieber, M. Extent to which homology can constrain coding exon junctional diversity in V(D)J recombination. Nature 363, 625–627 (1993). https://doi.org/10.1038/363625a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/363625a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing