Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reverse transduction measured in the isolated cochlea by laser Michelson interferometry

Abstract

IT is thought that the sensitivity of mammalian hearing depends on amplification of the incoming sound within the cochlea by a select population of sensory cells, the outer hair cells. It has been suggested that these cells sense displacements and feedback forces which enhance the basilar membrane motion by reducing the inherent damping of the cochlear partition1–7. In support of this hypothesis, outer hair cells show membrane-potential-induced length changes1–3 at acoustic rates. This process has been termed 'reverse transduction'. For amplification, the forces should be large enough to move the basilar membrane. Using a displacement-sensitive interferometer8, we tested this hypothesis in an isolated cochlea while stimulating the outer hair cells with current passed across the partition. We show here that the cochlear partition distorts under the action of electrically driven hair cell length changes and produces place-specific vibration of the basilar membrane of a magnitude comparable to that observed near auditory threshold (about 1 nm). Such measurements supply direct evidence that cochlear amplification arises from the properties of the outer hair cell population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brownell, W. E., Bader, C. R., Bertrand, D. & de Ripaubierre, Y. Science 227, 194–196 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Dallos, P., Evans, B. N. & Hallworth, R. Nature 350, 155–157 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Ashmore, J. F. J. Physiol. 388, 323–347 (1987).

    Article  CAS  Google Scholar 

  4. Neely, S. T. & Kim, D. O. J. acoust. Soc. Am. 79, 1472–1480 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Dallos, P. in Auditory Function: Neurobiological Bases of Hearing (eds Edelman, G. M., Gall, W. E. & Cowan, W. M.) 153–188 (Wiley, New York, 1988).

    Google Scholar 

  6. Hubbard, A. Science 259, 68–71 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Davis, H. Hearing Res. 9, 79–90 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Mammano, F. & Ashmore, J. F. J. Physiol. 452, 169P (1992).

    Google Scholar 

  9. Dallos, P. Hearing Res. 14, 281–291 (1984).

    Article  CAS  Google Scholar 

  10. Ashmore, J. F. & Meech, R. W. M. Nature, 322, 368–371 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Evans, B. N., Hallworth, R. & Dallos, P. Soc. Neurosci. Abstr. 14, 800 (1988).

    Google Scholar 

  12. Evans, E. F., Wilson, J. P. & Borerwe, T. A. ‘Tinnitus’, Ciba Foundation Symposium 85, 108–138 (1981).

    CAS  Google Scholar 

  13. Stypulkowsky, P. H. Hearing Res. 46, 113–143 (1990).

    Article  Google Scholar 

  14. McFadden, D. & Plattsmier, H. S. J. acoust. Soc. Am. 76, 443–448 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Shehata, W. E., Brownell, W. E. & Dieler, R. Acta otolar. 111, 707–718 (1991).

    Article  CAS  Google Scholar 

  16. Santos-Sacchi, J. J. Neurosci. 9, 2954–2962 (1989).

    Article  CAS  Google Scholar 

  17. Santos-Sacchi, J. J. Neurosci. 11, 3096–3110 (1991).

    Article  CAS  Google Scholar 

  18. Davis, H. Laryngoscope 68, 359–382 (1958).

    Article  CAS  Google Scholar 

  19. Kolston, P. J., de Boer, E., Viergever, M. & Smoorenberg, G. J. acoust. Soc. Am. 86, 133–140 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Mammano, F. & Nobili, R. J. acoust. Soc. Am. 93, 3320–3332 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Greenwood, D. D. J. acoust. Soc. Am. 87, 2592–2605 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Ulfendahl, M., Khanna, S. M. & Flock, Å. Hearing Res. 40, 55–64 (1989).

    Article  CAS  Google Scholar 

  23. Hubbard, A. E. & Mountain, D. C. Science 222, 510–512 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Reuter, G. & Zenner, H. P. Hearing Res. 43, 219–230 (1990).

    Article  CAS  Google Scholar 

  25. Reuter, G., Gitter, A., Thurm, U. & Zenner, H. P. Hearing Res. 60, 236–246 (1992).

    Article  CAS  Google Scholar 

  26. Sellick, P. M., Patuzzi, R. B. & Johnstone, B. M. J. acoust. Soc. Am. 72, 131–141 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Ruggero, M. & Rich, N. J. Neurosci. 11, 1057–1067 (1991).

    Article  CAS  Google Scholar 

  28. Nuttall, A. L., Dolan, D. F. & Avinash, G. Hearing Res. 51, 203–214 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mammano, F., Ashmore, J. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature 365, 838–841 (1993). https://doi.org/10.1038/365838a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/365838a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing