Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme

Abstract

GROUP I introns are highly structured RNAs which catalyse their own splicing by guanosine-initiated transesterification reactions1,2. Their catalytic core is generally stabilized by RNA-RNA interactions within the core and with peripheral RNA structures3,4. Additionally, some group I introns require proteins for efficient splicing in vivo5. The Neurospora CYT-18 protein, the mitochondria! tyrosyl-transfer RNA synthetase (mt TyrRS), promotes splicing of the Neurospora mitochondrial large ribosomal RNA (LSU) and other group I introns by stabilizing the catalytically active structure of the intron core6–8. We report here that CYT-18 functions similarly to a peripheral RNA structure, PSabc, that stabilizes the catalytic core of the Tetrahymena LSU intron. The CYT-18 protein and PSabc RNA bind to overlapping sites in the intron core, inducing similar conformational changes correlated with splicing activity. Our results show that a protein can play the role of an RNA structure in a catalytic RNA, a substitution postulated for the evolution of nuclear pre-messenger RNA introns from self-splicing introns9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cech, T. R. A. Rev. Biochem. 59, 543–568 (1990).

    Article  CAS  Google Scholar 

  2. Saldanha, R., Mohr, G., Belfort, M. & Lambowitz, A. M. FASEB J. 7, 15–24 (1993).

    Article  CAS  Google Scholar 

  3. Michel, F. & Westhof, E. J. molec. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  4. Jaeger, L., Westhof, E. & Michel, F. J. molec. Biol. 221, 1153–1164 (1991).

    Article  CAS  Google Scholar 

  5. Lambowitz, A. M. & Perlman, P. S. Trends biochem. Sci. 15, 440–444 (1990).

    Article  Google Scholar 

  6. Akins, R. A. & Lambowitz, A. M. Cell 50, 331–345 (1987).

    Article  CAS  Google Scholar 

  7. Mohr, G., Zhang, A., Gianelos, J. A., Belfort, M. & Lambowitz, A. M. Cell 69, 483–494 (1992).

    Article  CAS  Google Scholar 

  8. Guo, Q. & Lambowitz, A. M. Genes Dev. 6, 1357–1372 (1992).

    Article  CAS  Google Scholar 

  9. Cech, T. R. Cell 44, 207–210 (1986).

    Article  CAS  Google Scholar 

  10. Sharp, P. A. Science 254, 663 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Murphy, F. L. & Cech, T. R. Biochemistry 32, 5291–5300 (1993).

    Article  CAS  Google Scholar 

  12. Murphy, F. L. & Cech, T. R. J. molec. Biol. 236, 49–63 (1994).

    Article  CAS  Google Scholar 

  13. Joyce, G. F., van der Horst, G. & Inoue, T. Nucleic Acids Res. 17, 7879–7889 (1989).

    Article  CAS  Google Scholar 

  14. van der Horst, G., Christian, A. & Inoue, T. Proc. natn. Acad. Sci. U.S.A. 88, 184–188 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Flor, P. J., Flanegan, J. B. & Cech, T. R. EMBO J. 11, 3391–3399 (1989).

    Article  Google Scholar 

  16. Been, M. D. & Cech, T. R. Nucleic Acids Res. 13, 8389–8408 (1985).

    Article  CAS  Google Scholar 

  17. Inoue, T. & Cech, T. R. Proc. natn. Acad. Sci. U.S.A. 82, 648–652 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Jaeger, J. A., Zuker, M. & Turner, D. H. Biochemistry 29, 10147–10158 (1990).

    Article  CAS  Google Scholar 

  19. Banerjee, A. R., Jaeger, J. A. & Turner, D. H. Biochemistry 32, 153–163 (1993).

    Article  CAS  Google Scholar 

  20. Streicher, B., von Ahsen, U. & Schroeder, R. Nucleic Acids Res. 21, 311–317 (1993).

    Article  CAS  Google Scholar 

  21. Cherniack, A. D., Garriga, G., Kittle, J. D. Jr., Akins, R. A. & Lambowitz, A. M. Cell 62, 745–755 (1990).

    Article  CAS  Google Scholar 

  22. Burke, J. M., et al. Nucleic Acids Res. 15, 7217–7221 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Zaug, A. J., Been, M. D. & Cech, T. R. Nature 324, 429–433 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Galloway-Salvo, J. L., Coetzee, T. & Belfort, M. J. molec. Biol. 211, 537–549 (1990).

    Article  CAS  Google Scholar 

  25. Kittle, J. D. Jr., Mohr, G., Gianelos, J. A., Wang, H. & Lambowitz, A. M. Genes Dev. 5, 1009–1021 (1991).

    Article  CAS  Google Scholar 

  26. Williamson, C. L., Tierney, W. M., Kerker, B. J. & Burke, J. M. J. biol. Chem. 262, 14672–14682 (1987).

    CAS  PubMed  Google Scholar 

  27. Young, B., Herschlag, D. & Cech, T. R. Cell 67, 1007–1019 (1991).

    Article  CAS  Google Scholar 

  28. Ehresmann, C. et al. Nucleic Acids Res. 15, 9109–9128 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohr, G., Caprara, M., Quo, Q. et al. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Nature 370, 147–150 (1994). https://doi.org/10.1038/370147a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/370147a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing